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概要
このノートは谷口説男氏による著書「確率微分方程式 (共立講座 数学の輝き) 」の演習問題の解答を書い
たものです。いくつかの問題は解いていません。
2025.11.01. 公開用に、少しだけ手を加えました (といっても、すでに公開されているものではあったの
ですが)。常識的な範囲内で自由に使っていただければと思っています。

目次
1 確率論の基礎概念 2

2 マルチンゲール 7

3 ブラウン運動 10

4 確率積分 18

5 確率微分方程式 (I) 26

6 確率微分方程式 (II) 37

7 経路空間での微積分学 48

1



1 確率論の基礎概念
練習問題 1.1. σ(A)は σ-加法族であることを示せ。

解答. 任意の G ∈ Λ(A)は σ-加法族であるから ∅,Ω ∈ G であり、従ってとくに ∅,Ω ∈ σ(A)である。
A ∈ σ(A)とする。任意の G ∈ Λ(A)は σ-加法族であり、A ∈ σ(A) ⊂ G であるから、Ω \A ∈ G となって、
とくに Ω \A ∈

⋂
G = σ(A)となる。

Ai ∈ σ(A), i = 1, 2, · · ·とする。任意の G ∈ Λ(A)は σ-加法族であり、⋃∞
i=1Ai ∈ σ(A) ⊂ G であるから、⋃∞

i=1Ai ∈ G となって、とくに ⋃∞
i=1Ai ∈

⋂
G = σ(A)となる。以上で全ての条件が確認できた。

練習問題 1.2. 例 1.5(2)の Pが確率測度であることを確認せよ。

解答.

P(Ω) =

∞∑
i=1

pi1Ω(i) =

∞∑
i=1

pi = 1,

であるので Pは一つ目の条件を満たす。また Aj ∈ F , j = 1, 2, · · ·がたがいに交わらないとき、

1∪∞
j=1 Aj

(i) = 1

⇐⇒ i ∈
⋃∞
j=1Aj

⇐⇒ ある j = 1, 2, · · ·で i ∈ Aj

⇐⇒ ただ一つの j で i ∈ Aj

⇐⇒ ただ一つの j で 1Aj
(i) = 1

となる。ただし 3つ目の ⇐⇒ は Aj たちがたがいに交わらないことより従う。以上より

1∪∞
j=1 Aj

(i) =

∞∑
j=1

1Aj
(i)

となって、
P(

∞⋃
j=1

Aj) =

∞∑
i=1

1∪∞
j=1 Aj

(i) =

∞∑
i=1

∞∑
j=1

1Aj
(i) =

∞∑
j=1

∞∑
i=1

1Aj
(i) =

∞∑
j=1

P(Aj)

となる。よって Pは二つ目の条件も満たす。以上で Pは確率測度となる。

練習問題 1.3. E,E1, E2 を可分距離空間とし、dを E 上の距離関数とする。

(1) E1×E2のボレル σ-加法族 B(E1×E2)は σ ({A1 ×A2|Ai ∈ B(Ei), i = 1, 2}) と一致することを示せ。
(2) E-値確率変数 X,Y に対し d(X,Y )は確率変数となることを示せ。

解答. (1)。まず E1 × E2 の開集合 U は
U =

⋃
(U1 × U2)

と書ける。ただし Ui は Ei の開集合であり和は U1 × U2 ⊂ U となるペア (U1, U2) すべてに渡る。ここで
E1, E2 は可分であるから、E1 ×E2 は第二可算であり、従って可算個のペア (U1, U2)をとることで U は上の
形のある可算和として表すことができる。すると各 U1 × U2 は σ({A1 ×A2 | Ai ∈ B(Ei), i = 1, 2}) に属す
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るから、その可算和である U もそこに属することがわかる。B(E1 × E2)が開集合系で生成された σ-加法族
であることから、以上より、

B(E1 × E2) ⊂ σ({A1 ×A2 | Ai ∈ B(Ei), i = 1, 2})

がわかる。
Ai ∈ B(Ei)に対して A1 ×A2 ∈ B(E1 × E2)であるから逆の包含もわかる。以上で示された。
(2) X,Y を並べて得られる X × Y : Ω → E は E-値確率変数であり、また距離関数 d(−,−)は連続関数で
あり、連続関数は可測関数であるから、以上より dと X × Y の合成である d(X,Y )は確率変数となる。

練習問題 1.4. 確率変数 Xn が X に確率収束し、f : R → Rが連続であれば、f(Xn)は f(X)に確率収束す
ることを示せ。

解答. ε > 0を任意にとる。An :
def
= {|f(Xn)− f(X)| > ε}とおく。示したいことは次である：

P(An) → 0, (n→ ∞).

δ > 0をとる。
Bδ :

def
=
{
x ∈ R | ∃y, |x− y| < δかつ |f(x)− f(y)| > ε

}
とおく。また、Cn(δ) :def= {|Xn −X| ≥ δ} とおく。これらの定義から、任意の δ > 0に対して

An ⊂ {X ∈ Bδ} ∪ Cn(δ)

となることがわかる。次に注意：

(1) f は連続なので、⋂δ>0Bδ = ∅であり、従って limδ→0 P(X ∈ Bδ) = 0となる。
(2) Xn は X に確率収束するので、任意の δ > 0に対して P(Cn(δ)) → 0, (n→ ∞)となる。

以上より
P(An) ≤ P(X ∈ Bδ) +P(Cn(δ)) → 0, (n→ ∞, δ → 0)

となって所望の結果を得る。

練習問題 1.5. F を σ-加法族、G ⊂ F を有限な σ-加法族とする。このとき、A1, · · · , An ∈ G があって次を
満たす：

(1) Ai ∩Aj = ∅, (i 6= j).

(2)
⋃n
i=1Ai = Ω.

さらに P(Ai) > 0と仮定する。このとき、ある X ∈ L1(P)が存在して

E [X|G] =
n∑
i=1

E [X;Ai]

P(Ai)
1Ai

となることを示せ。

解答. なんかこの問題は「Ai たちに対する最小性」のようなものがないとまずい気がする。たとえば
n = 1, A1 = Ωとかは二つの条件を満たして、しかも P(A1) = 1になるけど E [X|G] = E[X]で一定になっ
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て、これはすごくまずい気がする。というわけでここではそのような Ai たちであって最小のものをとってく
ることで最後の等式が成立するようにできることを示す。
まず Ωに同値関係を入れる：

ω1 ∼ ω2 :
def⇐⇒ ∀A ∈ G, ω1, ω2 ∈ Aまたはω1, ω2 ∈ Ω \A.

明らかに ∼は Ω上の同値関係であり、G が有限集合であることから、Ωは有限個の同値類 A1, · · · , An に分
割される。しかも Ai は Ai を含む G の元すべての共通部分として表すことができるので、G が有限集合であ
ることから、Ai ∈ G であることもわかる。これらの Ai は明らかに条件 (1)と (2)を満たす。
任意の iで P(Ai) > 0であると仮定して、最後の等式を証明する。E[X | G]は Ai 上一定の値 (それを cと
おく) をとる確率変数である (なぜなら Ai より小さい G の元は ∅しかないから)。従って

E[X;Ai] = E [E [X|G] ;Ai]

=

∫
Ai

E [X|G] dP

= c

∫
Ai

dP

= cP(Ai)

となる。ゆえに確率変数 E[X | G] は Ai 上で一定の値 c = E[X;Ai]
P(Ai)

をとる。Ai たちは disjoint であるから、
所望の等式を得る。

練習問題 1.6. X ∈ L2(P)であるとき、次を示せ：

E
[
(X − E [X|G])2

]
= min

{
E
[
(X − Z)2

]∣∣Z ∈ L2(P)は G-可測} .
解答. X ∈ L2(P)より |E [X|G]|2 ≤ E

[
X2
∣∣G] となる (定理 1.34(4))。期待値をとって、

E
[
|E [X|G]|2

]
≤ E

[
E
[
X2
∣∣G]] = E[X2] <∞

となる。ゆえに E [X|G] ∈ L2(P)である。従って、とくに、任意の Z ∈ L2(P)に対して

E
[
(X − E [X|G])2

]
≤ E

[
(X − Z)2

]
となることが示せれば良い。
Y :

def
= Z − E [X|G]とおく。このとき、

E
[
(X − Z)2

]
− E

[
(X − E [X|G])2

]
= E [−Y (X − E [X|G] +X − Z)]

= E [−Y (2X − 2E [X|G]− Y )]

= E[Y 2] + 2E [Y (E [X|G]−X)]

≥ 2E [Y E [X|G]− Y X]

= 2E [E [XY |G]]− 2E [Y X]

= 0

となって所望の不等式を得る。
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練習問題 1.7. G ⊂ F を σ-加法族、X,Y を独立な確率変数、Y を G-可測とするとき、任意の有界な B(R2)-

可測関数 g : R2 → Rに対し
E [g(X,Y )|G] = E [g(X, y)] |y=Y

となることを示せ。

解答. 本文中では右辺も条件付き期待値になっていたけど、G は必要ないはず。より一般的な次の事実を証明
する：

(†) E1, E2 を (可分) 距離空間、G ⊂ F を σ-加法族、Y : Ω → E2 を G-可測な確率変数、X : Ω → E1 を
Y と独立な確率変数とするとき、任意の B(E1 × E2)-可測関数 g : R2 → Rに対し

E [g(X,Y )|G] = E [g(X, y)] |y=Y

となる。

g = g+ − g− と分けて示すことを考えれば、g は非負であると仮定して (†) を証明すれば十分であ
る。また g を単関数の単調増加な列で近似して単調収束定理を用いることを考えれば、g は単関数で
あると仮定して (†) を証明すれば十分である。さらに単関数は定義関数の線形和であることから、ある
A ∈ B(E1 × E2)に対して g = 1A となると仮定して (†)を証明すれば十分である。さらに練習問題 1.3 (1)

より B(E1 ×E2) = σ ({A×B|A ∈ B(E1), B ∈ B(E2)}) であるから、ある A ∈ B(E1), B ∈ B(E2)に対して
g = 1A×B となると仮定して (†)を証明すれば十分である。このとき g(x, y) = 1A×B(x, y) = 1A(x)1B(y) で
あるから、条件付き期待値の性質 (定理 1.34 (6) (7)) より主張 (†)は自明に成立する。以上で示された。

練習問題 1.8. G ⊂ F を σ-加法族とし、X,Xn ∈ L1(P)とする。次を示せ：

(1) Xn → X, inL1 ならば E [Xn|G] → E [X|G] , inL1 である。
(2) Xn ≤ Xn+1, (P-a.s.)かつ Xn → X, (P-a.s.)ならば E [Xn|G] → E [X|G] , (P-a.s.)である。
(3) Xn ≥ 0, (P-a.s.)ならば

E
[
lim inf
n→∞

Xn

∣∣∣G] ≤ lim inf
n→∞

E [Xn|G] , (P-a.s.)

となる。ただし lim infn→∞Xn 6∈ L1(P)の場合は、この不等式は∞ = ∞を許して

E
[
lim inf
n→∞

Xn;A
]
≤ lim inf

n→∞
E [Xn;A] , (∀A ∈ G)

が成り立つことを意味する。
(4) Y ≥ 0 なる Y ∈ L1(P) が存在し、|Xn| ≤ Y, (P-a.s.) であり、さらに Xn → X, (P-a.s.) であるとす
る。このとき E [Xn|G] → E [X|G] , (P-a.s.)である。

解答. (1)。‖Xn −X‖1 = E [Xn −X] → 0, (n→ ∞)とする。このとき

‖E [Xn|G]− E [X|G] ‖1 = E [‖E [Xn −X|G] ‖]
≤ E [E [‖Xn −X‖|G]] (イェンセンの不等式)

≤ E [‖Xn −X‖]
→ 0, (n→ ∞)

となる。
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(2)。X̄ :
def
= limn→∞ E [Xn|G]とおく。これは G-可測である。X̄ = E [X|G] , (P-a.s.)を示せば良い。その

ためには、条件付き確率の一意性より、任意の A ∈ G に対して E
[
X̄;A

]
= E [X;A]であれば良い。ここで通

常の期待値に対する単調収束定理より、P-a.s.に

E
[
X̄;A

]
= E

[
lim
n→∞

E [Xn|G] ;A
]

= E
[
lim
n→∞

E [Xn|G]1A
]

= lim
n→∞

E [E [Xn|G]1A]

= lim
n→∞

E [Xn1A]

= E
[
lim
n→∞

Xn1A

]
= E

[
lim
n→∞

Xn;A
]

= E [X;A]

となる。これは所望の結果である。
(3)。もしある P(A) > 0となる A ∈ G 上で >側の不等号が成立するとすれば、A上で期待値をとることで

E
[
lim inf
n→∞

Xn;A
]
> lim inf

n→∞
E [Xn;A]

となるが、これは通常の期待値に対するファトゥの補題で Xn を Xn1A とした場合に反する。
(4)。

E [Xn|G] ≤ E [|Xn||G] ≤ E [Y |G]

なので X̄ :
def
= limn→∞ E [Xn|G] をとって (2)と同じことをすれば良い。
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2 マルチンゲール
練習問題 2.1. FX

t は Xs, (s ∈ T ∩ [0, t])をすべて可測にする最小の σ-加法族であることを示せ。

解答. F が FX
t より小さい σ-加法族であれば、ある sとある A ∈ B(R)があって {Xs ∈ A} 6∈ F となるので

Xs は F-可測でなくなる。

練習問題 2.2. {Xt}t∈T が Ft-発展的可測であれば、(Ft)-適合である。

解答. 二つの可測関数の合成
{t} × Ω → [0, t]× Ω

X−→ E

は可測である。

練習問題 2.3. N ⊂ F0 とする。P-a.s.に右連続かつ (Ft)-適合な確率過程 {Xt}t∈T は (Ft)-発展的可測な修
正 {Yt}t∈T を持つことを示せ。

解答. 例 2.2より Xt は右連続な修正を持つ。補題 2.4よりそれは (Ft)-発展的可測である。

練習問題 2.4. X,Y ≥ 0, p ≥ 0とする。このとき次を示せ：

E [XY p] =

∫ ∞

0

pλp−1E [X;Y > λ] dλ.

解答. Z = Y p とおく。右辺を変形すると∫ ∞

0

pλp−1E [X;Y > λ] dλ =

∫ ∞

0

E [X;Y > λ] d(λp)

=

∫ ∞

0

E
[
X;Y > λ1/p

]
dλ

=

∫ ∞

0

E [X;Z > λ] dλ

=

∫ ∞

0

∫
Ω

X(ω)1Z>λdP(ω)dλ

=

∫
Ω

∫ ∞

0

X(ω)1Z>λdλdP(ω)

=

∫
Ω

X(ω)

∫ ∞

0

1Z>λdλdP(ω)

=

∫
Ω

X(ω)Z(ω)dP(ω)

= E[XZ]
= E[XY p]

となる (Y のまま計算してもよかったかも)。

練習問題 2.5. Fτ が σ-加法族であることを示せ。

解答. 定義を確認すると、
Fτ = {A ∈ F|A ∩ {τ ≤ t} ∈ Ft, (t ∈ [0,∞))}
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である。まず

• ∅ ∩ {τ ≤ t} = ∅ ∈ Ft
• Ω ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft

なので σ-加法族であるための一つ目の条件は満たされる。A ∩ {τ ≤ t} ∈ Ft と仮定する。このとき

(Ω \A) ∩ {τ ≤ t} = {τ ≤ t} \ ({τ ≤ t} ∩A)

であるが、ここで {τ ≤ t}と {τ ≤ t} ∩ Aはともに Ft の元であるから (Ω \ A) ∩ {τ ≤ t} も Ft の元となる。
よって σ-加法族であるための二つ目の条件も成立する。Ai ∩ {τ ≤ t} ∈ Ft が i = 1, 2, · · ·で成り立つとする。
このとき ( ∞⋃

i=1

Ai

)
∩ {τ ≤ t} =

∞⋃
i=1

(Ai ∩ {τ ≤ t}) ∈ Ft

となって σ-加法族であるための条件が全て確認できた。

練習問題 2.6. T > 0とする。Mt ∈ L2(P), (∀t ≤ T )となる連続マルチンゲール {Mt}t≤T 全体をM2
c,T と

おく。また、M ∈ M2
c,T に対して

‖|M |‖ :
def
= ‖MT ‖2

と定義する。Mn ∈ M2
c,T をマルチンゲールの列とし、‖|Mn −Mm|‖ → 0, (n,m→ ∞)とする。このとき、

あるM ∈ M2
c,T が存在して

E
[
sup
t≤T

|Mn
t −Mt|2

]
→ 0, (n→ ∞)

となることを示せ。

解答. Doobの不等式 (定理 2.9) と仮定 ‖|Mn −Mm|‖ → 0より

E
[
sup
t≤T

|Mn
t −Mt|2

]
≤ 22E

[
(Mn

T −Mm
T )2

]
→ 0, (n,m→ ∞)

となる。よって命題 2.18(2)よりある連続な確率過程Mt があって

lim
n→∞

E
[
sup
t≤T

(Mn
t −Mt)

2

]
= 0

となる。あとはMt がマルチンゲールとなれば良いが、それは命題 2.8(4)より従う。

練習問題 2.7.

d(M,N) :
def
=

∞∑
n=1

2−n (‖ 〈M −N〉n ‖2 ∧ 1) , (M,N ∈ M2
c)

とおく。

(1)

∞∑
n=1

2−n

E

∑
t≤n

|Mt −Nt|2
1/2

∧ 1 ≤ 4d(M,N)

を示せ。
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(2) limn,m→∞ d(M,N) = 0 であるときあ rM ∈ M2
c が存在して limn→∞ d(Mn,M) = 0 となることを

示せ。

解答. (1)。
(2)。(1)より、すべての N に対して

E

∑
t≤N

|Mn
t −Mm

t |2
→ 0, (n,m→ ∞)

となる。すると命題 2.18(2)よりある連続確率過程Mt, t ≥ 0があって

E

∑
t≤N

|Mn
t −Mt|2

→ 0, (n→ ∞)

となる。すると ‖ 〈Mn −M〉N ‖2 =

練習問題 2.8.
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3 ブラウン運動
練習問題 3.1. X ∼ N(µ,Σ)であることは、任意の f ∈ Cb(RN )に対して

E [f(X)] =

∫
RN

f(x)gN,µ,Σ(x)dx

が成り立つことと同値であることを示せ。

解答. f として定義関数 1A をとることで、この等式が成り立てば X ∼ N(µ,Σ)であることはわかる。逆を
示すには、f が定義関数であるときにこの等式が成立することから、線形和をとることで単関数に対してこの
等式が成立し、単関数の単調増加な列で有界非負可測関数を近似して単調収束定理を用いることで、任意の有
界非負可測関数に対してこの等式が成立し、任意の有界可測関数を有界非負可測関数の差で表すことによりす
べての f ∈ Cb(RN )に対してこの等式が成立することがわかる。

練習問題 3.2.

(1) ∂
∂tgN (t, x) = 1

2∆gN (t, x) となることを示せ。
(2) f ∈ Cb(RN )に対して

u(t, x) :
def
=

∫
RN

f(x+ y)gN (t, y)dy

とおく。 ∂
∂tu = 1

2∆u を示せ。

解答.

u(t, x) =

∫
RN

f(x+ y)gN (t, y)dy =

∫
RN

f(y)gN (t, x+ y)dy

なので (1)がわかれば (2)は明らかである。(1)を示す。
∂

∂t
gN (t, x) =

∂

∂t
gN,0,tI(x)

=
∂

∂t

(
1√

(2π)N tN
exp

(
− 1

2t

∑
α

(xα)2

))

= −N
2
t−

N
2 −1 1√

(2π)N
exp

(
− 1

2t

∑
(xα)2

)
+

(
−1

2

∑
α

(xα)2

)
1

t2
1√

(2π)N tN
exp

(
− 1

2t

∑
(xα)2

)
=

1

2

∑
α

(
(xα)2

t2
− 1

t

)
gN (t, x),

∂

∂xα
gN (t, x) =

1√
(2πt)N

(
−2xα

2t

)
exp

(
− 1

2t

∑
α

(xα)2

)

= −x
α

t
gN (t, x),(

∂

∂xα

)2

gN (t, x) =
∂

∂xα

(
−x

α

t
gN (t, x)

)
= −1

t

(
gN (t, x) + xα

∂

∂xα
gN (t, x)

)
= −1

t

(
gN (t, x)− (xα)2

t
gN (t, x)

)
10



=

(
(xα)2

t
− 1

t

)
gN (t, x),

であるから、これらを比較すれば良い。

練習問題 3.3. Bt を d次元ブラウン運動とする。

(1) c > 0とし、B̃t :def= 1
cBc2t とおく。B̃t も d次元ブラウン運動であることを示せ。

(2) t0 ≥ 0とし、B̂t :def= Bt+t0 −Bt0 とおく。B̂t も d次元ブラウン運動であることを示せ。
(3) U を直交行列とする。UBt も d次元ブラウン運動であることを示せ。

解答. (1)と (2)では、3.2節冒頭のブラウン運動の定義にある 4つの条件を満たすことを確認する。
(1)。まず B̃0(ω) =

1
cB0(ω) = 0 であるから B̃t は一つ目の条件を満たす。

また t 7→ c2tは連続関数であるから、任意の ω に対して B̃t(ω) =
1
cBc2t(ω) も tに関する連続関数となり、

B̃t は二つ目の条件も満たす。
0 = t0 < t1 < · · · < tn をとる。Bt は d 次元ブラウン運動であるから、三つ目の条件より、0 = c2t0 <

c2t1 < · · · < c2tn に対して Bc2t1 −Bc2t0 , · · · , Bc2tn −Bc2tn−1
は独立であり、従ってこれらを一斉に 1

c 倍し
た B̃t1 − B̃t0 , · · · , B̃tn − B̃tn−1

も独立である。よって B̃t は三つ目の条件も満たす。
X ∼ N(0, tI)となるときに cX ∼ N(0, c2tI)となることに注意すれば B̃t が四つ目の条件を満たすことが
わかる。以上で B̃t は d次元ブラウン運動である。
(2)。まず B̂0 = Bt0 −Bt0 = 0であるから B̂t は一つ目の条件を満たす。
また B̂t は連続な確率過程から確率変数を引いたものであるから連続な確率過程であり、とくに二つ目の条
件を満たす。
さらに 0 = t′0 < t′1 < · · · < t′n に対して ti = t′i + t0, (i = 1, · · · , n), t−1 = 0 と置きなおすことで

Bt0 −Bt−1
, · · · , Btn −Btn−1

は独立となるが、ここで B̂t = Bt+t0 −Bt であるから

B̂t′i = Bti −Bti−1 = B̂t′i − B̂t′i−1
, (i = 0, · · · , n)

となり、従って B̂t′1 − B̂t′0 , · · · , B̂t′n − B̂t′n−1
も独立となる。これは B̂t が三つ目の条件を満たすことを示して

いる。
0 ≤ s < tを任意にとる。B̂t − B̂s = Bt+t0 −Bs+t0 ∼ N(0, (t+ t0 − s− t0)I) = N(0, (t− s)I)なので B̂t

は四つ目の条件も満たす。
(3)。命題 3.5 を使う。0 = t0 < t1 < · · · < tn と f ∈ Cb((Rd)n) を任意にとる。g(x1, · · · , xn) :

def
=

f(Ux1, · · · , Uxn)とおく。すると g ∈ Cb((Rd)n)である。従って、

E[f(UBt1 , · · · , UBtn)] = E[g(Bt1 , · · · , Btn)]

=

∫
(Rd)n

g(x1, · · · , xn)
n∏
i=1

gd(ti − ti−1, xi − xi−1)dx1 · · · dxn

=

∫
(Rd)n

f(Ux1, · · · , Uxn)
n∏
i=1

gd(ti − ti−1, xi − xi−1)dx1 · · · dxn

=

∫
(Rd)n

f(y1, · · · , yn)
n∏
i=1

gd(ti − ti−1, U
−1(yi − yi−1))(| detU−1|)ndy1 · · · dyn
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=

∫
(Rd)n

f(y1, · · · , yn)
n∏
i=1

gd(ti − ti−1, U
−1(yi − yi−1))dy1 · · · dyn

となる。ここで U が直交行列であることから、

gd(t, U
−1x) =

1

(2πt)d
exp

(
−1

2

〈
U−1x, t−1U−1x

〉)
=

1

(2πt)d
exp

(
−1

2

〈
x, t−1x

〉)
= gd(t, x)

となることに注意すれば、

E[f(UBt1 , · · · , UBtn)] =
∫
(Rd)n

f(y1, · · · , yn)
n∏
i=1

gd(ti − ti−1, U
−1(yi − yi−1))dy1 · · · dyn

=

∫
(Rd)n

f(y1, · · · , yn)
n∏
i=1

gd(ti − ti−1, yi − yi−1)dy1 · · · dyn

となることがわかり、命題 3.5より UBt は d次元ブラウン運動となる。

練習問題 3.4. Bt を 1次元ブラウン運動とする。

(1)
∫
R e

−|x|g1(t, x)dx ≤ 1−
√

2t
π + t

2 を示せ。
(2) T > 0とし、Vn :

def
=
∑2n−1
k=0

∣∣∣B (k+1)T
2n

−B kT
2n

∣∣∣ とおく。limn→∞ E
[
e−Vn

]
= 0を示せ。

(3) P-a.s.に写像 t 7→ Bt(ω)は有界変動でないことを示せ。

解答. (1)。∫R e−|x|g1(t
2, x)dx ≤ 1−

√
2
π t+

t2

2 を示せば良い。

F (t) :
def
= 1−

√
2

π
t+

t2

2
−
∫
R
e−|x|g1(t

2, x)dx

と置く。 ∫
R
e−|x|g1(t

2, x)dx

=

∫
R
e−|x| 1√

2πt
e−

1
2t2

x2

dx

=
2√
2πt

∫ ∞

0

e−
1

2t2
x2−xdx

=
2√
2π

∫ ∞

0

e−
1
2x

2−txdx

=
2√
2π

∫ ∞

0

e−
1
2 (x+t)

2+ 1
2 t

2

dx

=
2√
2π
e

1
2 t

2

∫ ∞

0

e−
1
2 (x+t)

2

dx

=
2√
2π
e

1
2 t

2

∫ ∞

t

e−
1
2x

2

dx

= e
1
2 t

2

− 2√
2π
e

1
2 t

2

∫ t

0

e−
1
2x

2

dx

12



であるから、
F (t) = 1−

√
2

π
t+

t2

2
− e

1
2 t

2

+
2√
2π
e

1
2 t

2

∫ t

0

e−
1
2x

2

dx

となる。従って F (0) = 0がわかる。よって F ′(t) ≥ 0, (∀t ≥ 0)を証明すれば良い。また、

F ′(t) = −
√

2

π
+ t− te

1
2 t

2

+
2√
2π

(
te

1
2 t

2

∫ t

0

e−
1
2x

2

dx+ 1

)
= t− te

1
2 t

2

+
2√
2π
te

1
2 t

2

∫ t

0

e−
1
2x

2

dx

= te
1
2 t

2

(
+

2√
2π

∫ t

0

e−
1
2x

2

dx− 1 + e−
1
2 t

2

)

となる。
G(t) :

def
=

2√
2π

∫ t

0

e−
1
2x

2

dx− 1 + e−
1
2 t

2

とおく。G(0) = 0, limt→∞G(t) = 0は直ちにわかる。

G′(t) =
2√
2π
e−

1
2 t

2

− te−
1
2 t

2

= e−
1
2 t

2

(
2√
2π

− t

)
であるから、0 ≤ t ≤ 2√

2π
に対して G′(t) ≥ 0 であり、t ≥ 2√

2π
に対して G′(t) ≤ 0 である。ここで

G(0) = 0, limt→∞G(t) = 0を考慮すれば G(t) ≥ 0, (∀t ≥ 0)がわかる。以上より F ′(t) ≥ 0, (∀t ≥ 0)がわか
り、F (t) ≥ 0, (∀t ≥ 0)がわかった。
(2)。Bt はブラウン運動なので、各 k = 0, · · · , 2n− 1に対して B (k+1)T

2n
−B kT

2n
たちは独立である。従って、

E
[
e−Vn

]
= E

[
2n∏
k=0

exp
(
−|B (k+1)T

2n
−B kT

2n
|
)]

=

2n∏
k=0

E
[
exp

(
−|B (k+1)T

2n
−B kT

2n
|
)]

=

2n∏
k=0

∫
R
e−|x|g1(

(k + 1)T

2n
− kT

2n
, x)dx

=

2n∏
k=0

∫
R
e−|x|g1(

T

2n
, x)dx

⋆
≥

2n∏
k=0

(
1− T

2n−1π
+

T

2n+1

)

=

(
1− T

2n−1π
+

T

2n+1

)2n

→ 0, (n→ ∞)

となる。ただし⋆の箇所は (1)を用いた。
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(3)。ω ∈ Aに対して t 7→ Bt(ω)が有界変動となるような P(A) 6= 0な集合 A ⊂ Ωが存在するとする。す
ると

E
[
e−Vn

]
= E

[
e−Vn ;A

]
+ E

[
e−Vn ; Ω \A

]
= E

[
e−Vn ;A

]

となる。ここで Aは t 7→ Bt(ω)が有界変動となるような ω たちからなるので、e−Vn は各 ω ∈ Aに対して 0

でない正の値をとるある確率変数に収束する。すなわち

lim
n→∞

E
[
e−Vn ;A

]
= E

[
lim
n→∞

e−Vn ;A
]
6= 0

となり、(2)の結果に反する。

練習問題 3.5. Bt を d次元 Ft-ブラウン運動とする。次を示せ。

(1) Bαt , (α = 1, · · · , d)は (Ft)-マルチンゲールである。
(2)

{
Bαt B

β
t − δαβt

}
t
, (α, β = 1, · · · , d) は (Ft)-マルチンゲールである。とくに

〈
Bα, Bβ

〉
t
= t, (α 6=

β, t ≥ 0)となる。

解答. (1)。0 ≤ s < tをとる。Bt はブラウン運動なので、Bt −Bs は Bs と独立であり、すなわち Fs と独立
であるから、

E [Bαt |Fs] = Bαs + E [Bαt −Bαs |Fs]
= Bαs + E [Bαt −Bαs ]

= Bαs

となる。これは Bα が Ft-マルチンゲールであることを示している。
(2)。0 ≤ s < tをとる。α 6= β のときは、Bα, Bβ は独立であるから、BαBβ のマルチンゲール性は Bα の
マルチンゲール性から従う。残っているのは α = β のときである。

E
[
(Bαt )

2 − t
∣∣Fs] = (Bαs )

2 − t+ E
[
(Bαt )

2 − (Bαs )
2
∣∣Fs]

= (Bαs )
2 − t+ E

[
(Bαt −Bαs )

2 + 2Bαs (B
α
t −Bαs )

∣∣Fs]
= (Bαs )

2 − t+ E
[
(Bαt −Bαs )

2
∣∣Fs]+ E [2Bαs (B

α
t −Bαs )|Fs]

= (Bαs )
2 − t+ E

[
(Bαt −Bαs )

2
]
+ 2Bαs E [Bαt −Bαs ]

= (Bαs )
2 − t+ t− s+ 2Bαs E [Bαt −Bαs ]

= (Bαs )
2 − s

となるので (Bαt )
2 − tは (Ft)-マルチンゲールとなる。以上で示された。

練習問題 3.6. 0 = t0 < t1 < · · ·は limi→∞ ti = ∞を満たすとする。α = 1, · · · , d, i = 0, 1, · · ·に対し、fα,i
は Fti -可測であるとする。任意の t ≥ 0に対して

E

[
exp

(
1

2

d∑
α=1

∞∑
i=0

f2α,i(t ∧ ti+1 − t ∧ ti)

)]
<∞
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であるとする。このとき

Mt :
def
=

d∑
α=1

∞∑
i=0

fα,i

(
Bαt∧ti+1

−Bαt∧ti

)
,

et :
def
= exp

(
Mt −

1

2

d∑
α=1

∞∑
i=0

f2α,i(t ∧ ti+1 − t ∧ ti)

)
,

で定義される確率過程 et はマルチンゲールであることを示せ。

解答. 定理 3.10よりMt はマルチンゲールである。また、定理 3.10の証明と同様にして、ti ≤ s < t ≤ ti+1

となる場合に E [et|Fs] = es が証明できれば良い。さらに、ti < s < t ≤ ti+1 または ti ≤ s < t < ti+1 のそ
れぞれの場合で E [et|Fs] = es が証明できているとすると、s = ti, t = ti+1 の場合も

E
[
eti+1

∣∣Fti] = E
[
E
[
eti+1

∣∣∣F ti+1+ti
2

]∣∣∣Fti] = E
[
e ti+1+ti

2

∣∣∣Fti] = eti

が成り立つ。従って ti < s < t ≤ ti+1 と ti ≤ s < t < ti+1 のそれぞれの場合に E [et|Fs] = es が証明できれ
ば良い。この場合は 0 < 1− ti+1−ti

t−s となることに注意。
0 < ε < 1− ti+1−ti

t−s となる εをとる。このとき 1
1−ε <

ti+1−ti
t−s である。仮定より、

E

[
exp

(
1

2(1− ε)

d∑
α=1

∞∑
i=0

f2α,i(t− s)

)]

< E

[
exp

(
1

2

d∑
α=1

∞∑
i=0

f2α,i(ti+1 − ti)

)]
<∞

となることに注意。
相加相乗平均の関係より

fα,i(B
α
t −Bαs ) ≤

1

2(t− s)
f2α,i +

(1− ε)

2(t− s)
(Bαt −Bαs )

2

であることに注意すると、

E

[
exp

(∑
α

fα,i(B
α
t −Bαs )

)]

≤ E

[
exp

(∑
α

1

2(t− s)
f2α,i +

(1− ε)

2(t− s)
(Bαt −Bαs )

2

)]
⋆
= E

[
exp

(∑
α

1

2(t− s)
f2α,i

]
E
[
(1− ε)

2(t− s)
(Bαt −Bαs )

2

)]
♠
≤ E

[
exp

(∑
α

1

2(t− s)
f2α,i

)]
eε−d/2

<∞
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となる。ただし⋆の箇所は fα,i が Fti -可測であることと Bt −Bs が Fs ⊃ Fti と独立であることを使い、♠
の箇所は定理 3.11を使った。以上で

exp

(∑
α

fα,i(B
α
t −Bαs )

)
∈ L1(P)

がわかった。あとは定理 3.10の証明と同様である。

練習問題 3.7. Bt を d次元ブラウン運動、ξ ∈ Rd とする。このとき exp
(
i 〈ξ,Bt〉+ |ξ|2

2 t
)
はマルチンゲー

ルであることを示せ。

解答. 0 ≤ s < tをとる。

E
[
exp

(
i 〈ξ,Bt〉+

|ξ|2

2
t

)∣∣∣∣Fs]
= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)
E [exp (i 〈ξ,Bt −Bs〉)|Fs]

= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)
E [exp (i 〈ξ,Bt −Bs〉)]

= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)∫
(Rd)2

ei⟨ξ,x2−x1⟩gd(s, x1)gd(t− s, x2 − x1)dx1dx2

= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)∫
Rd

ei⟨ξ,x2⟩gd(t− s, x2)dx2

∫
Rd

gd(s, x1)dx1

= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)∫
Rd

ei⟨ξ,x⟩gd(t− s, x)dx

⋆
= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)
E
[
ei⟨ξ,N(0,(t−s)I)⟩

]
♠
= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t

)
e−

1
2 ⟨ξ,(t−s)ξ⟩

= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
t− 1

2
|ξ|2(t− s)

)
= exp

(
i 〈ξ,Bs〉+

|ξ|2

2
s

)

となる。ただし⋆の箇所は式 (3.2)を用い、♠の箇所はガウス分布 N の特性関数の表示 (命題 3.1(5)) を用
いた。以上で所望の結果を得る。

練習問題 3.8. Bt を 1次元ブラウン運動とする。τ :
def
= inf {t > 0|Bt > 0}とおく。

(1) {τ = 0} ∈ F∗
0 となることを示せ。

(2) P(τ = 0) ≥ 1
2 を示せ。

(3) P(τ = 0) = 1を示せ。

解答. (1)。

Ω \ {τ = 0} = {τ > 0}
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=
⋃
N∈N

{
τ >

1

N

}
= lim
N→∞

{
τ >

1

N

}
= lim
N→∞

{
sup

0≤t≤ 1
N

Bt ≤ 0

}
∈ F∗

1/N , (∀N ∈ N)

となるよって
{τ = 0} ∈

⋂
N∈N

F∗
1/N

⋆
= F∗

0

となる。ただし⋆の箇所は定理 3.17を用いた。以上で示された。
(2)。{τ = 0} =

⋂
N∈N

{
τ ≤ 1

N

} なので、定理 1.4(3)より

P(τ = 0) = lim
N→∞

P

(
τ ≤ 1

N

)
となる。一方、 {

τ ≤ 1

N

}
⊃
{
B1/N > 0

}
であるから、

P

(
τ ≤ 1

N

)
≥ P

(
B1/N > 0

)
=

∫
x>0

g1

(
1

N
,x

)
dx =

1

2

となる。以上より
P(τ = 0) = lim

N→∞
P

(
τ ≤ 1

N

)
≥ 1

2

がわかる。
(3)。(1)より P(τ = 0) = 0または P(τ = 0) = 1である。一方 (2)より P(τ = 0) ≥ 1

2 である。以上より
P(τ = 0) = 1となる。
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4 確率積分
練習問題 4.1. ft ∈ L0 に対する確率積分は ft の表示によらないことを示せ。

解答. ft, gs が同じ L0 の元を与えるとする。0 = t0 < t1 < · · ·と 0 = s0 < s1 < · · ·を各 [ti, ti+1), [si, si+1)

上で ft, gt が一定 (ω ∈ Ω には依存する) となるような時刻の列とする。ft, gs が同じ単関数の (異なる
かもしれない) 表示であることから、ある 0 = u0 < u1 < · · · と i(n), j(n) が存在して、各 n について
ti(n) = un = sj(n) であり、また各 nに対して s, t ∈ [un, un+1)となるならば ft = fti(n)

= gs = gsj(n)
とな

る。このとき
i(n+1)−1∑
i=i(n)

fti

(
Bαt∧ti+1

−Bαt∧ti

)

= fti(n)

i(n+1)−1∑
i=i(n)

(
Bαt∧ti+1

−Bαt∧ti

)
= fti(n)

(
Bαt∧ti(n+1)

−Bαt∧ti(n)

)
= fun

(
Bαt∧un+1

−Bαt∧un

)
j(n+1)−1∑
j=j(n)

gsj

(
Bαs∧sj+1

−Bαs∧sj

)

= gsj(n)

j(n+1)−1∑
j=j(n)

(
Bαs∧sj+1

−Bαs∧sj

)
= gun

(
Bαs∧un+1

−Bαs∧un

)
,

となる。これらは変数 s, tの表記の違い以外に異なる点はない。以上を足し合わせることで確率積分が表記に
よらないことがわかる。

練習問題 4.2. 0 = t0 < t1 < · · · , limn→∞ tn = ∞とする。fi : Ω → Rを Fti -可測関数として、

ft :
def
=

∞∑
i=0

fi1[0,ti)(t)

と定義する。このとき、ft ∈ L2
loc であり、さらに∫ t

0

fsdB
α
s =

∞∑
i=0

fi

(
Bαt∧ti+1

−Bαt∧ti

)
となることを示せ。

解答. この問題は ft の定義を間違えていると思う。なぜなら各 tについて ft の定義式の右辺は無限和になっ
ていて、たとえば関数 fi として fi = i のような定数関数をとってくると右辺は発散してしまう。これは
ft ∈ L2

loc どころの話ではないと思われる。たぶん、定義関数が 1[ti,ti+1) なんじゃないか？
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定義関数が 1[ti,ti+1) だと思って問題を解く。明らかに ft は Ft-発展的可測である。任意に t をとる。
tn ≤ t < tn+1 となる nをとると、∫ t

0

f2s ds =

∫ t

0

∞∑
i=0

fi1[ti,ti+1)(s)ds =

n−1∑
i=0

f2i (ti+1 − ti) + f2n(t− tn) <∞

であるので、ft ∈ L2
loc である。

最後の等式を証明する。まず、(有界とは限らない!) 可測関数 f : Ω → Rにより、ft = f1[0,u)(t)とかけて
いる場合に最後の等式を示す。可測関数 f が有界であれば、定義より、u ≥ tなら∫ t

0

fsdB
α
s = fBαt

であり u ≤ tなら ∫ t

0

fsdB
α
s = fBαu

となる。とくに ∫ t

0

fsdB
α
s = fBαt∧u

となる。次に f が非負の場合、fn :
def
= f ∧ nとおけば fn1[0,u)(t) → f1[0,u)(t), (n→ ∞, ∀ω, t) であり、従っ

て L2
loc の関数に対する確率積分の定義より、u ≥ tなら∫ t

0

fsdB
α
s = lim

n→∞

∫ t

0

fns dB
α
s = lim

n→∞
fnBαt = fBαt

となり u ≤ tなら ∫ t

0

fsdB
α
s = lim

n→∞

∫ t

0

fns dB
α
s = lim

n→∞
fnBαu = fBαu

となる。とくに ∫ t

0

fsdB
α
s = fBαt∧u

となる。最後に f が任意の場合、f = f+ − f− として確率積分の加法性より u ≥ tなら∫ t

0

fsdB
α
s =

∫ t

0

(f+1[0,u)(s)− f−1[0,u)(s))dB
α
s

=

∫ t

0

f+1[0,u)(s)dB
α
s −

∫ t

0

f−1[0,u)(s)dB
α
s

= f+B
α
t − f−B

α
t

= fBαt

となり u ≤ tなら ∫ t

0

fsdB
α
s =

∫ t

0

(f+1[0,u)(s)− f−1[0,u)(s))dB
α
s

=

∫ t

0

f+1[0,u)(s)dB
α
s −

∫ t

0

f−1[0,u)(s)dB
α
s

= f+B
α
u − f−B

α
u

= fBαu
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となる。とくに ∫ t

0

fsdB
α
s = fBαt∧u

となる。
ft = f1[u1,u2)(t)に対しては、ft = f1[0,u2)(t) − f1[0,u1)(t) であるから、確率積分の加法性より、t ≤ u1

なら ∫ t

0

fsdB
α
s =

∫ t

0

(f1[0,u2)(s)− f1[0,u1)(s))dB
α
s

=

∫ t

0

f1[0,u2)(s)dB
α
s −

∫ t

0

f1[0,u1)(s)dB
α
s

= fBαt − fBαt

= 0

であり、u1 ≤ t ≤ u2 なら ∫ t

0

fsdB
α
s =

∫ t

0

(f1[0,u2)(s)− f1[0,u1)(s))dB
α
s

=

∫ t

0

f1[0,u2)(s)dB
α
s −

∫ t

0

f1[0,u1)(s)dB
α
s

= fBαt − fBαu1

= f(Bαt −Bαu1
)

であり、t ≥ u2 なら ∫ t

0

fsdB
α
s =

∫ t

0

(f1[0,u2)(s)− f1[0,u1)(s))dB
α
s

=

∫ t

0

f1[0,u2)(s)dB
α
s −

∫ t

0

f1[0,u1)(s)dB
α
s

= fBαu2
− fBαu1

= f(Bαu2
−Bαu1

)

である。とくに、 ∫ t

0

fsdB
α
s = f(Bt∧u2 −Bt∧u1)

となる。
この問題で考えられている一般の ft に対して最後の等式を証明する。tn ≤ t < tn+1 となる nをとれば、確
率積分の加法性とこれまでに得られた結果から、∫ t

0

fsdB
α
s =

∫ t

0

∞∑
i=0

fi1[ti,ti+1)(s)dB
α
s

=

∞∑
i=0

∫ t

0

fi1[ti,ti+1)(s)dB
α
s

=

∞∑
i=0

fi(Bt∧ti+1 −Bt∧ti)

となる。ただし和は実際には有限和であることから積分と交換した。以上で所望の等式が証明できた。
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練習問題 4.3. ϕ : [0,∞) → Rを連続関数とする。ϕn(t) :def= ϕ
(

[2nt]
2n

)
とおく。次を示せ：

(1)
∫ t
0
ϕn(s)dB

α
s ∼ N

(
0,
∫ t
0
ϕ2n(s)ds

)
(2)

∫ t
0
ϕ(s)dBαs ∼ N

(
0,
∫ t
0
ϕ2(s)ds

)
解答. (1)。より一般に、0 = t0 < t1 < · · · , limn→∞ tn = ∞ となる時刻の列が存在して各 t ∈ [ti, ti+1) に
対して ω, t によらずに一定の値 ft をとる確率過程 ft ∈ L0 に対して同様の事実を証明する。t ≥ 0 をとる。
tm ≤ t < tm+1 となるmをとると、∫ t

0

fsdB
α
s =

∞∑
i=0

fti

(
Bαt∧ti+1

−Bαt∧ti

)
=

m−1∑
i=0

fti

(
Bαti+1

−Bαti

)
+ ftm

(
Bαt −Bαtm

)
⋆∼ N

(
0,

m−1∑
i=0

f2ti(ti+1 − ti) + f2tm(t− tm)

)

= N

(
0,

∫ t

0

f2s ds

)
となる。ただし⋆の箇所は命題 3.2(2)を用いた。
(2)。まず ϕn が補題 4.5の条件を満たすことを示す。任意に t ≥ 0と ε > 0をとる。区間 [0, t]はコンパク
トなので、ϕは [0, t]上では一様連続である。従って、ある δ > 0が存在して |x− y| < δ, x, y ∈ [0, t]に対し
て |ϕ(x)− ϕ(y)| <

√
ε
t となる。ここで t2−N < δ となる十分大きい N をとれば、n ≥ N と s ∈ [0, t]に対し

て
∣∣∣s− [2ns]

2n

∣∣∣ < t
2n < δ となるから、とくに n ≥ N と s ∈ [0, t]に対して

|ϕn(s)− ϕ(s)| =
∣∣∣∣ϕ( [2ns]2n

)− ϕ(s)

∣∣∣∣ <√ε

t

となる。以上より、n ≥ N に対して∫ t

0

|ϕn(s)− ϕ(s)|2 ds <
∫ t

0

ε

t
ds = ε

となる。これは ∫ t

0

|ϕn(s)− ϕ(s)|2 ds→ 0, (n→ ∞)

を示している。よって補題 4.6より、ϕの確率積分 ∫ t
0
ϕ(s)dBαs は確率過程

∫ t
0
ϕn(s)dB

α
s の極限となる。

次に、各 tに対して二つの確率変数 ∫ t
0
ϕn(s)dB

α
s と

∫ t
0
ϕm(s)dBαs の差を考える。これらは (1)よりガウス

分布であることに注意。ϕn(s)− ϕm(s)は [i/2N , (i+1)/2N )の形の区間上で ωにも sにもよらない定数であ
るから、(1)でより一般的に証明した事実から、∫ t

0

(ϕn(s)− ϕm(s)) dBαs ∼ N

(
0,

∫ t

0

(ϕn(s)− ϕm(s))
2
ds

)
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となる。従って、∥∥∥∥∫ t

0

ϕn(s)dB
α
s −

∫ t

0

ϕm(s)dBαs

∥∥∥∥
2

= E

[(∫ t

0

ϕn(s)dB
α
s −

∫ t

0

ϕm(s)dBαs

)2
]

= E
[
N

(
0,

∫ t

0

(ϕn(s)− ϕm(s))
2
ds

)]
=

∫ t

0

(ϕn(s)− ϕm(s))
2
ds

となる。ここで既に示したことから、十分おおきい n,mに対しては、任意の sについて

|ϕn(s)− ϕm(s)|2 ≤ |ϕn(s)− ϕ(s)|2 + |ϕm(s)− ϕ(s)|2 < 2ε

となるから、 ∫ t

0

(ϕn(s)− ϕm(s))
2
ds→ 0, (n,m→ ∞)

となる。よって定理 1.13より、ガウス分布の族 ∫ t
0
ϕn(s)dB

α
s は確率変数

∫ t
0
ϕ(s)dBαs に L2 収束する。よっ

て命題 3.2(5)より ∫ t
0
ϕ(s)dBαs もガウス分布であり、∫ t

0

ϕ2n(s)ds→
∫ t

0

ϕ2(s)ds, (n→ ∞)

であることから ∫ t

0

ϕ(s)dBαs ∼ N

(
0,

∫ t

0

ϕ2(s)ds

)
がわかる。

練習問題 4.4. T ∈ (0,∞] とする。ϕ : [0, T ) → (0,∞) は ∫ T
0
ϕ2(s)ds = ∞ を満たすとする。Φ(t) :

def
=∫ t

0
ϕ2(s)dsとおくとこれは単調増加である。ψ を Φの逆関数とする。このとき

bt :
def
=

∫ ψ(t)

0

ϕ(s)dBαs

で定まる確率過程はブラウン運動であることを示せ。

解答. ct :
def
= bΦ(t) =

∫ t
0
ϕ(s)dBαs とおく。任意に f ∈ C∞

0 (R)をとる。伊藤の公式より

f(bt)− f(b0) = f(cψ(t))− f(0)

=

∫ ψ(t)

0

f ′(cs)ϕ(s)dB
α
s +

1

2

∫ ψ(t)

0

f ′′(cs)ϕ
2(s)ds

=

∫ ψ(t)

0

f ′(cs)ϕ(s)dB
α
s +

1

2

∫ t

0

f ′′(cψ(s))ϕ
2(ψ(s))dψ(s)

⋆
=

∫ ψ(t)

0

f ′(cs)ϕ(s)dB
α
s +

1

2

∫ t

0

f ′′(bs)ds

となる。ただし⋆の箇所は ψ−1(s) = Φ(s) =
∫ s
0
ϕ2(u)du を用いて

ds = d (Φ(ψ(s))) = ψ′(s)Φ′(ψ(s))ds = ϕ2(ψ(s))d(ψ(s))
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と計算した。とくに、定理 4.9(4)より

f(bt)− f(b0)−
1

2

∫ t

0

f ′′(bs)ds =

∫ ψ(t)

0

f ′(cs)ϕ(s)dB
α
s

はマルチンゲールであり、定理 3.12より bt はブラウン運動となる。
別解答。定理 4.9(4)より ct はマルチンゲールであり、その二次変分は Φ(t) =

∫ t
0
ϕ2(s)dsである。従って

とくに bt もマルチンゲールであり、その二次変分は Φ(ψ(t)) = tである。注意 4.18にあるレヴィの定理を用
いることで bt がブラウン運動であることがわかる。

練習問題 4.5. 伊藤過程 Xt と f ∈ C2(R)に対し、

d(f(Xt)) =

N∑
i=1

f
(1)
i (Xt) ◦ dXi

t

を示せ。ただし ◦は Stratonovich積分である。

解答. 添字は縮約記法で表記する。dXi
t = αijdB

j
t + bitdtとおく。

dXi
t · dX

j
t = αikα

j
l dB

k
t dB

l
t = αikα

j
l δ
kldt =

∑
k

αikα
j
kdt

となる。伊藤の公式から

d(f(Xt)) = f
(1)
i (Xt)dX

i
t +

1

2
f
(2)
ij dX

i
t · dX

j
t

= f
(1)
i (Xt)dX

i
t +

1

2

∑
k

f
(2)
ij α

i
kα

j
kdt,

d(f
(1)
i (Xt)) · dXi

t = f
(2)
ij (Xt)dX

j
t · dXi

t +
1

2
f
(3)
ijk(Xt)dX

j
t · dXi

t · dXk
t

= f
(2)
ij (Xt)dX

i
t · dX

j
t

=
∑
k

f
(2)
ij (Xt)α

i
kα

j
kdt

となるので、

d(f(Xt)) = f
(1)
i (Xt)dX

i
t +

1

2

∑
k

f
(2)
ij α

i
kα

j
kdt

= f
(1)
i (Xt)dX

i
t +

1

2
d(f

(1)
i (Xt)) · dXi

t

= f
(1)
i (Xt) ◦ dXi

t

となる。これは所望の等式である。

練習問題 4.6. 確率変数 X は eaX ∈ L1(P), (∀a ∈ R)を満たすとする。

(1) e|X| ∈ Lp(P), (∀p ≥ 1)を示せ。
(2) G ∈ Lp(P), (p > 1)に対し、C上の写像 ζ 7→ E

[
GeζX

] は正則関数となることを示せ。
解答. (1)。ea|x| ≤ eax + e−ax であるから、任意の aで eaX ∈ L1(P)であることより、E[ea|X|] ≤ E[eaX ] +

E[e−aX ] <∞ となって ea|X| ∈ L1(P), (∀a ∈ R)がわかる。また、E[(ea|X|)p] = E[eap|X|] <∞であるから、
ea|X| ∈ Lp(P), (∀a ∈ R, ∀p ≥ 1)もわかる。
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(2)。ζ ∈ C を任意にとり、ζ の近傍での微分可能性を示せば良い。十分大きい定数 A > |ζ| を一つ選ぶ
(A > Re(ζ)である)。このとき

E
[∣∣XGeζX ∣∣] = E

[
|XG|e|Re(ζ)X|

]
< E

[
|XG|e|AX|

]
である。X < eX であるから、任意の q に対して X ∈ Lq(P) であることに注意すると、G ∈ Lp(P) と任
意の q に対して X, e|AX| ∈ Lq(P) であることから、ヘルダーの不等式より |XG|e|AX| ∈ L1(P) がわかる。
Y :

def
= |XG|e|AX| とおく。ζ に収束する点列 ζn を |ζn| < Aとなるようにとり、Xn :

def
= GeζnX−GeζX

ζn−ζ と定め
る。平均値の定理より、θn ∈ Cであって |ζ − θn| < |ζ − ζn|となるものが存在し、Xn = XGeθnX となる。
θn → ζ, (n→ ∞)と |Xn| ≤ Y に注意して、優収束定理により

E [Xn] → E
[
XGeζX

]
, (n→ ∞)

となる。とくに ζn の取り方によらずに同一の極限 E
[
XGeζX

]を持つことから、ζ 7→ E
[
GeζX

] は正則であ
ることがわかる。

練習問題 4.7. p ≥ 2とする。ft ∈ L2 は任意の T ≥ 0に対して E
[∫ T

0
|ft|pdt

]
< ∞を満たすとする。この

とき
E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

fsdB
α
s −

∫ t

0

fns dB
α
s

∣∣∣∣p
]
→ 0, (n→ ∞), (∀T ≥ 0)

を満たす fnt ∈ L0 が存在することを示せ。

解答. 証明の方針は以下の通り：

(1) まず補題 4.5と同じ議論により、E
[∫ T

0
|ft − fnt |pdt

]
→ 0, (n→ ∞) となる fnt ∈ L0 をとってくる。

(2) 次にモーメント不等式 (定理 4.27) を使って極限を評価する。

(1) を実行する。gnt :
def
= (−n) ∨ (ft ∧ n) とおく。すると各 t, ω に対して |gnt | ≤ |ft| であるから、とくに

gnt ∈ L2 であり、さらに任意の T ≥ 0 に対して E
[∫ T

0
|gnt |pdt

]
< ∞ を満たす。ここで優収束定理により

E
[∫ T

0
|ft − gnt |pdt

]
→ 0であることに注意すると、Lp-ノルムが三角不等式を満たすこと (ミンコフスキーの

不等式) から、gtn に対する所望の近似を求めることで ft に対する所望の近似を得ることができる。よって、
所望の近似を得るには、ft は有界であると仮定して良い。
ft は有界であると仮定する。hnt :

def
= n

∫ t
(t− 1

n )∨0
fsds とおくと hnt は有界かつ連続であり、∀ω に対してほ

とんど全ての tで limn→∞ hnt (ω) = ft(ω)である。有界収束定理により E
[∫ T

0
|ft − hnt |pdt

]
→ 0であること

に注意して、前段落と同じ理由により ft を有界かつ連続と仮定しても良い。
ft は有界かつ連続であると仮定する。fnt :

def
= fk/n, t ∈ [k/n, (k + 1)/n) と定めると、連続性により

fnt (ω) → ft(ω), (∀t, ∀ω) であるので、有界収束定理により E
[∫ T

0
|ft − fnt |pdt

]
→ 0となる。fnt ∈ L0 である

から、所望の近似を得ることができた。
(2) を実行する。今、E

[∫ T
0
|ft − fnt |pdt

]
→ 0 となる fnt ∈ L0 が存在することがわかっている。Xt :

def
=
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∫ t
0
(fs − fns ) dB

α
s と置くと、

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

fsdB
α
s −

∫ t

0

fns dB
α
s

∣∣∣∣p
]

= E
[

sup
0≤t≤T

|Xt|p
]

⋆
≤ ApE

(∫ T

0

(fs − fns )
2
dt

)p/2
♠
≤ ApT

p−1E

[∫ T

0

|fs − fns |
p
dt

]
→ 0, (n→ ∞)

となる。ただし⋆の箇所はモーメント不等式 (定理 4.27) を用い、♠の箇所はヘルダーの不等式 (例 1.14) を
用いた。また、Ap は pのみに依存する定数である。以上で示された。

練習問題 4.8. Bt を 1次元ブラウン運動とし、T > 0とする。

(1) (T − t)Bt =
∫ t
0
(T − s)dBs −

∫ t
0
Bsdsを示せ。

(2) B3
T =

∫ T
0
ftdBt を満たす確率過程 ft ∈ L2 を求めよ。

解答. (1)。∫ t
0
TdBs = TBt であるから、tBt =

∫ t
0
sdBs +

∫ t
0
Bsds を示せば良い。すなわち d(sBs) =

sdBs +Bsdsを示せば良いが、これは伊藤の積の公式 (例 4.16 (3)) より明らかである。
(2)。まず d((Bt)

3) = 3B2
t dBt + 3Btdtであるから、

B3
T =

∫ T

0

(3B2
s )dBs + 3

∫ T

0

Bsds

となる。(1)の等式に t = T を代入すると、∫ T

0

Bsds =

∫ T

0

(T − s)dBs

がわかる。これを代入して、

B3
T =

∫ T

0

(3B2
s )dBs + 3

∫ T

0

Bsds =

∫ T

0

(3B2
s + 3(T − s))dBs

を得る。よって求める ft は ft = 3B2
t + 3(T − t)である。

25



5 確率微分方程式 (I)

練習問題 5.1. a ≤ 0 ≤ b, k ∈ Nとする。

φ(x) :
def
=


(x− a)2k+1, (x < a),

0, (a ≤ x ≤ b),

(x− b)2k+1, (x > b),

と定義する。Bt を 1次元ブラウン運動とし、Xt :
def
= φ(Bt)とおく。このとき Xt は次の確率微分方程式の解

であることを示せ：
dXt = (2k + 1)X

2k
2k+1

t dBt + k(2k + 1)X
2k−1
2k+1

t dt.

解答. もとの問題文では Xt :
def
= φ(Xt)となっていたけどこれはたぶん間違いだと思う。

まず φ(x)の二階微分を計算する。

φ′(x) =


(2k + 1)(x− a)2k, (x < a),

0, (a ≤ x ≤ b),

(2k + 1)(x− b)2k, (x > b),

であるから、とくに φ′(x) = (2k + 1)φ(x)
2k

2k+1 である。また

φ′′(x) =


2k(2k + 1)(x− a)2k−1, (x < a),

0, (a ≤ x ≤ b),

2k(2k + 1)(x− b)2k−1, (x > b),

であるから、とくに φ′′(x) = 2k(2k + 1)φ(x)
2k−1
2k+1 である。以上で φは C2-級である。ブラウン運動 Bt は定

義から伊藤過程であるから、伊藤の公式より

dXt = dφ(Bt)

= φ′(Bt)dBt +
1

2
φ′′(Bt)dt

= (2k + 1)φ(Bt)
2k

2k+1 dBt + k(2k + 1)φ(Bt)
2k−1
2k+1 dt

= (2k + 1)X
2k

2k+1

t dBt + k(2k + 1)X
2k−1
2k+1

t dt

となる。これは所望の結果である。

練習問題 5.2. n ∈ Nとする。もし 1次元確率微分方程式

dXt =
1

n
Xn+1
t dBt +

n+ 1

2n2
X2n+1
t dt

の解 Xt, t ≥ 0が存在するならば
Xt = (1−Bt)

− 1
n , (t < τ1)

となることを示せ。ただし τ1 :
def
= {t ≥ 0|Bt = 1}である。これから上の確率微分方程式に解が存在しないこ

とを導け。
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解答. t < τ1 に対して Xt が上のように求まれば、Xt, t ≥ 0 が連続 (かつ Ft-発展的可測) な確率過程であ
ることに反する (t = τ1(ω)で連続でない)。すなわちはじめの確率微分方程式に解が存在しないことになる。
よって、はじめの確率微分方程式に解が存在すると仮定した上で、t < τ1 に対して Xt を求めれば良い。
仮定より、Xt は伊藤過程である。また、(dXt)

2 = 1
n2X

2n+2
t dtである。Yt :def= Xn

t とおけば、伊藤の公式
より

dYt = d(Xn
t )

= nXn−1
t dXt +

1

2
n(n− 1)Xn−2

t (dXt)
2

= nXn−1
t

(
1

n
Xn+1
t dBt +

n+ 1

2n2
X2n+1
t dt

)
+

1

2
n(n− 1)Xn−2

t

1

n2
X2n+2
t dt

= X2n
t dBt +

n+ 1

2n
X3n
t dt+

n− 1

2n
X3n
t dt

= X2n
t dBt +X3n

t dt

= Y 2
t dBt + Y 3

t dt

となる。とくに (dYt)
2 = Y 4

t dtである。Zt :
def
= 1

Yt
とおけば、伊藤の公式より

dZt = d

(
1

Yt

)
= − 1

Y 2
t

dYt +
1

Y 3
t

(dYt)
2

= −(dBt + Ytdt) + Ytdt

= −dBt

となる。また、初期条件 X0 = 1より Z0 = 1であるから、∫ t
0
で積分することで

Zt = 1−Bt

を得る。以上より t < τ1 に対して

Xt = Y
1
n
t = Z

− 1
n

t = (1−Bt)
− 1

n

となることがわかった。

練習問題 5.3. A ∈ Rd×d とする。Rd 上の確率微分方程式

dXt = dBt +AXtdt, X0 = x

の解 Xx
t を求めよ。また

Jxt :
def
= ∂xX

x
t =

(
∂Xx,i

t

∂xj

)
1≤i,j≤N

を求めよ。

解答. 行列 P に対して eP :
def
=
∑
n≥0

Pn

n! とおく。

d
(
e−AtXt

)
= e−At (−AXtdt+ dXt) = e−AtdBt = e−At ◦ dBt
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であるから、
Xi
t = Xi

0 +

∫ Bj
t

0

(
e−At

)i
j
dt

となる (j で和をとっている)。また定理 5.16より Jxt は (確率) 微分方程式

dJxt = AJxt dt, Jx0 = I

を満たすので、
Jxt = eAt

となる。

練習問題 5.4. d = N = 1, V ∈ C∞
d (R)とする。C∞-級関数 φ : R2 → Rは微分方程式

∂φ

∂ξ
(x, ξ) = V (φ(x, ξ)), φ(x, 0) = x

を満たすとする。

(1) Xx
t :

def
= φ(x,Bt)の満たす Stratonovich型の確率微分方程式を求めよ。

(2) Jxt :
def
= ∂

∂xX
x
t = exp

(∫ Bt

0
V ′(φ(x, η))dη

)
を示せ。

解答. 解答に入る前に Stratonovich積分に関するちょっとした注意をする。Stratonovich積分の定義と伊藤
の公式から、

f ′(Xt) ◦ dXt = f ′(Xt)dXt +
1

2
d (f ′(Xt)) dXt = f ′(Xt)dXt +

1

2
f ′′(Xt)(dXt)

2 = d (f(Xt))

となる。従って、これを積分することで、∫ t2

t1

f ′(Xt) ◦ dXt = f(Xt2)− f(Xt1)

を得る。とくに f は原始関数 ∫ t
0
f(u)duの tでの微分として表示できることから、∫ t2

t1

f(Xt) ◦ dXt =

∫ Xt2

Xt1

f(t)dt

となる (変数変換公式のような感じ？)。また、Y dZ + 1
2dY dZ = Y ◦ dZ = dW となるW があれば、

X ◦ (Y ◦ dZ) = X ◦ dW = XdW +
1

2
dXdW

= XY dZ +
1

2
XdY dZ +

1

2
Y dXdZ +

1

4
dXdY dZ

= XY dZ +
1

2
XdY dZ +

1

2
Y dXdZ

= XY dZ +
1

2
(d(XY )dZ)− 1

2
dXdY dZ

= XY dZ +
1

2
(d(XY )dZ)

= (XY ) ◦ dZ

となる。
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(1)。xを定数と考えて普通に Xx
t を微分する。Stratonovich積分で書けば、

d(Xx
t ) = d (φ(x,Bt))

=
∂φ

∂ξ
(x, ξ)

∣∣∣∣
ξ=Bt

◦ dBt

= V (φ(x,Bt)) ◦ dBt
= V (Xx

t ) ◦ dBt

となる。
(2)。Jxt は定理 5.16より

dJxt = V ′(Xx
t )J

x
t ◦ dBt = Jxt ◦ (V ′(Xx

t ) ◦ dBt)

を満たすので、

d (log(Jxt )) =
1

Jxt
◦ dJxt

=
1

Jxt
◦ (Jxt ◦ (V ′(Xx

t ) ◦ dBt))

= V ′(Xx
t ) ◦ dBt

= V ′(φ(x,Bt)) ◦ dBt

となる。これを ∫ t
0
で積分すれば、定理 5.16より Jx0 = 1なので、

log Jxt =

∫ t

0

V ′(φ(x,Bt)) ◦ dBt =
∫ Bt

0

V ′(φ(x, η))dη

となる。これは所望の結果である。

練習問題 5.5. 補題 5.13の |k| ≥ 2の場合の証明を完了せよ。

解答. |k|に関する帰納法で証明する。|k| = 0, 1の場合は本文中で証明が完了しているので、h < kとなるす
べての hに対して証明できているとして、kの場合を証明する。t ≤ T とする。
補題 5.13の証明中の最後の等式

∂kxX
(n),x
t = ∂kι(x) +

d∑
α=0

∫ t

0

∂Vα

(
X

(n),x
[s)n

)
∂kxX

(n),x
[s)n

dBαs

+
∑

2≤|h|,h<k

d∑
α=0

∫ t

0

(
∂kVα

) (
X

(n),x
[s)n

)
Φk

h

[
X

(n),x
[s)n

]
dBαs

+

[2nt)−1∑
m=0

R̂n,m,xTn,m
∂kxX

(n),x
Tn,m

+
∑

2≤|h|,h<k

R̂n,m,x,hTn,m
Φk

h

[
X

(n),x
Tn,m

]
+ R̂

n,[2nt),x
t ∂kxX

(n),x
[t)n

+
∑

2≤|h|,h<k

R̂
n,[2nt),x,h
t Φk

h

[
X

(n),x
[s)n

]
を用いる (本文中の式は第四項の和の中の R̂の添字が tとなっているが、これは Tn,m の間違いであると思わ
れる)。ここで R̂は、t, x, n,mに依存しない定数 C8, C9 により

|R̂n,m,xt |+ |R̂n,m,x,ht | ≤ C8|ξn,mt |2eC9|ξn,m
t | (†)

29



と評価できる確率過程であり、Φk
h [f ] は ∂hx f についてのある多項式である。各項を評価する。

帰納法の仮定より、すべての自然数 p に対し、x, n, 0 ≤ m ≤ [2nT ) と 2 ≤ |h|,h < k に依存しない定数
C10(p)が存在して

|∂hxX
(n),x
Tn,m

|p ≤ C10(p)

となる。従って、とくにある定数 C10 が存在して、すべての n, x, 0 ≤ m ≤ [2nT )に対し、∣∣∣Φk
h

[
X

(n),x
Tn,m

]∣∣∣ ≤ C10

となる。
Vα のすべての偏導関数が有限であることから、とくにある定数 C11 が存在して、すべての α = 0, 1, · · · , d
とすべての 2 ≤ |h|,h < kに対して |Vα| < C11 となる。従って、第三項は、ある定数 C12 を用いて、

E

sup
s≤t

∣∣∣∣∣∣
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

(
∂kVα

) (
X

(n),x
[u)n

)
Φk

h

[
X

(n),x
[u)n

]
dBαu

∣∣∣∣∣∣
p

≤ E

sup
s≤t

∣∣∣∣∣∣
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

∣∣∣(∂kVα) (X(n),x
[u)n

)∣∣∣ ∣∣∣Φk
h

[
X

(n),x
[u)n

]∣∣∣ dBαu
∣∣∣∣∣∣
p

≤ E

sup
s≤t

∣∣∣∣∣∣
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

C10C11dB
α
u

∣∣∣∣∣∣
p

⋆
≤ ApC10C11E

sup
s≤t

∣∣∣∣∣∣
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

du

∣∣∣∣∣∣
p
2


= C12

と評価できる。ただし⋆の箇所はモーメント不等式を用いた。
第四項と第五項のうち和∑2≤|h|,h<k

∑d
α=0 の部分を評価する。式 (†)より、

|R̂n,m,x,ht | ≤ |R̂n,m,xt |+ |R̂n,m,x,ht | ≤ C8|ξn,mt |2eC9|ξn,m
t |

であることに注意すると、ある定数 C13, C14 を用いて、∥∥∥∥∥∥sups≤t

∣∣∣∣∣∣
[2ns)−1∑
m=0

∑
2≤|h|,h<k

R̂n,m,x,hTn,m
Φk

h

[
X

(n),x
Tn,m

]
+

∑
2≤|h|,h<k

R̂n,[2
ns),x,h

s Φk
h

[
X

(n),x
[s)n

]∣∣∣∣∣∣
∥∥∥∥∥∥
p

⋆
≤

∥∥∥∥∥∥sups≤t

[2ns)−1∑
m=0

∑
2≤|h|,h<k

∣∣∣R̂n,m,x,hTn,m

∣∣∣ ∣∣∣Φk
h

[
X

(n),x
Tn,m

]∣∣∣+ ∑
2≤|h|,h<k

∣∣∣R̂n,[2ns),x,hs

∣∣∣ ∣∣∣Φk
h

[
X

(n),x
[s)n

]∣∣∣
∥∥∥∥∥∥

p

≤

∥∥∥∥∥∥sups≤t

[2ns)−1∑
m=0

∑
2≤|h|,h<k

C8|ξn,mTn,m
|2eC9|ξn,m

Tn,m
|
C10 +

∑
2≤|h|,h<k

C8|ξn,[s)ns |2eC9|ξn,[s)n
s |C10

∥∥∥∥∥∥
p

≤ C13

∥∥∥∥∥∥
[2nt)∑
m=0

sup
s≤t

(
|ξn,ms |2eC9|ξn,m

s |
)∥∥∥∥∥∥

p
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♠
≤ C13

[2nt)∑
m=0

∥∥∥∥sup
s≤t

|ξn,ms |2
∥∥∥∥
2p

∥∥∥∥sup
s≤t

eC9|ξn,m
s |

∥∥∥∥
2p

♣
≤ C13

[2nt)∑
m=0

K
1
2p

4p (t ∧ Tn,m+1 − t ∧ Tn,m)
4p/2
2p

∥∥∥∥sup
s≤t

eC9|ξn,m
s |

∥∥∥∥
2p

= C13

[2nt)∑
m=0

K
1
2p

4p (t ∧ Tn,m+1 − t ∧ Tn,m)
4p/2
2p

∥∥∥∥exp(C9 sup
s≤t

|ξn,ms |
)∥∥∥∥

2p

≤ C13K
1
2p

4p

[2nt)∑
m=0

1

[2nt)

∥∥∥∥exp(C9 sup
s≤t

|ξn,ms |
)∥∥∥∥

2p

= C13K
1
2p

4p

[2nt)∑
m=0

1

[2nt)

∥∥∥∥∥∥exp
C9 sup

s≤t

√∑
α

(Bαs∧Tn,m+1
−Bαs∧Tn,m

)2

∥∥∥∥∥∥
2p

≤ C13K
1
2p

4p

[2nt)∑
m=0

1

[2nt)

∥∥∥∥∥∥exp
C9 sup

s≤t

√∑
α

(Bs∧Tn,m+1
)2 +

√∑
α

(Bs∧Tn,m
)2

∥∥∥∥∥∥
2p

≤ C13K
1
2p

4p

[2nt)∑
m=0

1

[2nt)

∥∥∥∥∥∥exp
2C9 sup

s≤t

√∑
α

(Bαs )
2

∥∥∥∥∥∥
2p

= C13K
1
2p

4p

∥∥∥∥exp(2C9 sup
s≤t

|Bs|
)∥∥∥∥

2p

♡
≤ C14

と評価できる。ただし⋆の箇所はミンコフスキーの不等式を用い、♠の箇所はヘルダーの不等式とミンコフ
スキーの不等式を用い、♣の箇所は式 (5.19)を用い、♥の箇所は定理 3.11を用いた。以上で ∂kxX

(n),x
Tn,m

のか
かっていない項はすべて定数で上から評価できることがわかった。
∂kxX

(n),x
t のかかる項を評価する。第二項を評価する。式 (5.38) よりすべての 0 ≤ t ≤ T に対して

∂kxX
(n),x
t ∈ L2 であるから、α 6= 0の場合はある定数 C15 を用いて

E
[
sup
s≤t

∣∣∣∣∫ s

0

∂Vα

(
X

(n),x
[u)n

)
∂kxX

(n),x
[u)n

dBαu

∣∣∣∣p]
⋆
≤ (定数倍)E

[
sup
s≤t

∣∣∣∣∫ s

0

∂kxX
(n),x
[u)n

dBαu

∣∣∣∣p]
♠
≤ (定数倍)E

[(∫ t

0

(
∂kxX

(n),x
[s)n

)2
ds

) p
2

]
♣
≤ C15E

[∫ t

0

∣∣∣∂kxX(n),x
[s)n

∣∣∣p ds]
♡
= C15

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds
と評価できる。ただし⋆の箇所は Vα のすべての偏導関数が有界であることを用い、♠の箇所はモーメント
不等式を用い、♣の箇所はヘルダーの不等式を用い、♥の箇所はフビニの定理 (式 (5.38)より今の状況で使
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うことができる) を用いた。α = 0の場合はある定数 C16 を用いて

E
[
sup
s≤t

∣∣∣∣∫ s

0

∂Vα

(
X

(n),x
[u)n

)
∂kxX

(n),x
[u)n

dBαu

∣∣∣∣p]
⋆
≤ (定数倍)E

[
sup
s≤t

∣∣∣∣∫ s

0

∂kxX
(n),x
[u)n

du

∣∣∣∣p]
♠
≤ (定数倍)E

[
sup
s≤t

∫ s

0

∣∣∣∂kxX(n),x
[u)n

∣∣∣p du]
≤ C16E

[∫ t

0

∣∣∣∂kxX(n),x
[s)n

∣∣∣p ds]
♣
= C16

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds
と評価できる。ただし⋆の箇所は Vα のすべての偏導関数が有界であることを用い、♠の箇所はヘルダーの
不等式を用い、♣の箇所はフビニの定理を用いた。とくに、α = 0, · · · , dに対して、ある定数 C15, C16 ≤ C17

を用いて、

E

[
sup
s≤t

∣∣∣∣∣
d∑

α=0

∫ s

0

∂Vα

(
X

(n),x
[u)n

)
∂kxX

(n),x
[u)n

dBαu

∣∣∣∣∣
p]

≤ C17

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds
と評価できる。
第四項と第五項の残っている部分は、ある定数 C18 を用いて、∥∥∥∥∥∥sups≤t

∣∣∣∣∣∣
[2ns)−1∑
m=0

R̂n,m,xTn,m
∂kxX

(n),x
Tn,m

+ R̂n,[s)n,xs ∂kxX
(n),x
[s)n

∣∣∣∣∣∣
∥∥∥∥∥∥
p

⋆
≤

∥∥∥∥∥∥sups≤t

[2ns)−1∑
m=0

∣∣∣R̂n,m,xTn,m

∣∣∣ ∣∣∣∂kxX(n),x
Tn,m

∣∣∣+ ∣∣∣R̂n,[s)n,xs

∣∣∣ ∣∣∣∂kxX(n),x
[s)n

∣∣∣
∥∥∥∥∥∥

p

≤

∥∥∥∥∥∥
[2nt)−1∑
m=0

∣∣∣R̂n,m,xTn,m

∣∣∣ ∣∣∣∂kxX(n),x
Tn,m

∣∣∣+ ∣∣∣R̂n,[t)n,xt

∣∣∣ ∣∣∣∂kxX(n),x
[t)n

∣∣∣
∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
[2nt)−1∑
m=0

(
sup
s≤t

∣∣∣R̂n,m,xs

∣∣∣) ∣∣∣∂kxX(n),x
Tn,m

∣∣∣+ (sup
s≤t

∣∣∣R̂n,[t)n,xs

∣∣∣) ∣∣∣∂kxX(n),x
[t)n

∣∣∣
∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
[2nt)∑
m=0

(
sup
s≤t

∣∣∣R̂n,m,xs

∣∣∣) ∣∣∣∂kxX(n),x
Tn,m

∣∣∣
∥∥∥∥∥∥
p

♠
≤

∥∥∥∥∥∥
[2nt)∑
m=0

(
sup
s≤t

(
C8|ξn,ms |2eC9|ξn,m

s |
)) ∣∣∣∂kxX(n),x

Tn,m

∣∣∣
∥∥∥∥∥∥
p

♣
≤ C8

[2nt)∑
m=0

∥∥∥∥sup
s≤t

|ξn,ms |2eC9|ξn,m
s |

∣∣∣∂kxX(n),x
Tn,m

∣∣∣∥∥∥∥
p

♡
≤ C8

[2nt)∑
m=0

∥∥∥∥sup
s≤t

|ξn,ms |2eC9|ξn,m
s |

∥∥∥∥
p

∥∥∥∂kxX(n),x
Tn,m

∥∥∥
p

♢
≤ C8K

1
2p

4p

∥∥∥∥exp(2C9 sup
s≤t

|Bs|
)∥∥∥∥

p

[2nt)∑
m=0

(t ∧ Tn,m+1 − t ∧ Tn,m)
∥∥∥∂kxX(n),x

Tn,m

∥∥∥
p
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= C8K
1
2p

4p

∥∥∥∥exp(2C9 sup
s≤t

|Bs|
)∥∥∥∥

p

∫ t

0

∥∥∥∂kxX(n),x
[s)n

∥∥∥
p
ds

⋆⋆
≤ C18

∫ t

0

∥∥∥∂kxX(n),x
[s)n

∥∥∥
p
ds

と評価できる。ただし ⋆ の箇所はミンコフスキーの不等式を用い、♠ の箇所は式 (†) を用い、♣ の箇所は
ミンコフスキーの不等式を用い、♥ の箇所は Bs∧Tn,m+1 − Bs∧Tn,m と X

(n),x
Tn,m

が独立であることから従う
sups≤t |ξn,ms |2eC9|ξn,m

s | と ∂kxX
(n),x
Tn,m

の独立性を用い、♦ の箇所は ∂kxX
(n),x
Tn,m

のかかっていない第四項と第五
項の評価と同様の評価を行い、⋆⋆の箇所は任意の r > 0に対して E

[
exp

(
r supt≤T |Bt|

)]
<∞ であることを

用いた。
以上より、定数 C19, C20 を用いて

E
[
sup
s≤t

∣∣∣∂kxX(n),x
s − ∂kι(x)

∣∣∣p]

= E

[
sup
s≤t

∣∣∣∣∣
d∑

α=0

∫ s

0

∂Vα

(
X

(n),x
[u)n

)
∂kxX

(n),x
[u)n

dBαu

+
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

(
∂kVα

) (
X

(n),x
[u)n

)
Φk

h

[
X

(n),x
[u)n

]
dBαu

+

[2ns)−1∑
m=0

R̂n,m,xTn,m
∂kxX

(n),x
Tn,m

+
∑

2≤|h|,h<k

R̂n,m,x,hTn,m
Φk

h

[
X

(n),x
Tn,m

]
+R̂n,[2

nt),x
s ∂kxX

(n),x
[s)n

+
∑

2≤|h|,h<k

R̂n,[2
ns),x,h

s Φk
h

[
X

(n),x
[s)n

]∣∣∣∣∣∣
p

⋆
≤

E

[
sup
s≤t

∣∣∣∣∣
d∑

α=0

∫ s

0

∂Vα

(
X

(n),x
[u)n

)
∂kxX

(n),x
[u)n

dBαu

∣∣∣∣∣
p] 1

p

+ E

sup
s≤t

∣∣∣∣∣∣
∑

2≤|h|,h<k

d∑
α=0

∫ s

0

(
∂kVα

) (
X

(n),x
[u)n

)
Φk

h

[
X

(n),x
[u)n

]
dBαu

∣∣∣∣∣∣
p

1
p

+ E

sup
s≤t

∣∣∣∣∣∣
[2nt)−1∑
m=0

R̂n,m,xTn,m
∂kxX

(n),x
Tn,m

+ R̂n,[2
nt),x

s ∂kxX
(n),x
[s)n

∣∣∣∣∣∣
p

1
p

+ E

sup
s≤t

∣∣∣∣∣∣
[2nt)−1∑
m=0

∑
2≤|h|,h<k

R̂n,m,x,hTn,m
Φk

h

[
X

(n),x
Tn,m

]
+

∑
2≤|h|,h<k

R̂n,[2
ns),x,h

s Φk
h

[
X

(n),x
[s)n

]∣∣∣∣∣∣
p

1
p


p

♠
≤

(
C

1
p

17

(∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds) 1
p

+ C
1
p

12 + C18

(∫ t

0

∥∥∥∂kxX(n),x
[s)n

∥∥∥
p
ds

)
+ C14

)p
♡
≤ 4p−1

(
C17

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds+ C12 + Cp18

(∫ t

0

∥∥∥∂kxX(n),x
[s)n

∥∥∥
p
ds

)p
+ Cp14

)
♢
≤ 4p−1

(
C17

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds+ C12 + Cp18

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds+ Cp14

)
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= C19 + C20

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n

∣∣∣p] ds
⋆⋆
≤ C19 + C202

p

(∫ t

0

E
[∣∣∂kι(x)∣∣p] ds+ ∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n
− ∂kι(x)

∣∣∣p] ds)
≤ C19 + C202

pT + C202
p

∫ t

0

E
[∣∣∣∂kxX(n),x

[s)n
− ∂kι(x)

∣∣∣p] ds
≤ C19 + C202

pT + C202
p

∫ t

0

E
[
sup
s≤u

∣∣∣∂kxX(n),x
[s)n

− ∂kι(x)
∣∣∣p] du

となる。ただし⋆の箇所はミンコフスキーの不等式を用い、♠の箇所でこれまでに得られた評価を用い、♥
の箇所は凸不等式を用い、♦の箇所は第三項にヘルダーの不等式を用い、⋆⋆の箇所は凸不等式を用いた。よっ
てグロンウォールの不等式より、n = 1, 2, · · ·と x ∈ RN によらずに

E
[
sup
s≤t

∣∣∣∂kxX(n),x
s − ∂kι(x)

∣∣∣p]
≤ C19 + C202

pT + C202
p

∫ t

0

(C19 + C202
pT ) ea(t−s)ds

<∞

が成立する。以上で示された。

練習問題 5.6. C : [0, T ] → Rd×d は連続、A : [0, T ] → Rd×d は C1-級であり、

d

dt
A(t) = C(t)A(t)

を満たすとする。このとき
d

dt
detA(t) = (trC(t)) detA(t)

となることを示せ。

解答. t ∈ [0, T ]を任意にとる。tの近傍で恒等的に detA(t) = 0 である場合には所望の等式は自明に成立す
る。従って tの任意の近傍に対して detA(u) 6= 0となる点 uが存在すると仮定して良い。
detA(u) 6= 0 となる任意の点 u で所望の等式を証明することができたと仮定する。detA(t) は C1-級で

trC(t) は連続なので、所望の等式の両辺は連続である。従って detA(t) = 0 となる点 t の任意の近傍で
detA(un) 6= 0となる点 un をとり、等式

d

dt

∣∣∣∣
t=un

detA(t) = (trC(un)) detA(un)

の両辺で un → tの極限をとることで、点 tにおいても等式

d

dt
detA(t) = (trC(t)) detA(t)

が成立することがわかる。従って detA(t) 6= 0と仮定しても良い。このとき tの十分小さい近傍の点 uに対
して detA(u) 6= 0である。
十分小さい ε > 0と任意の行列 Aに対して

det(I + εA) = 1 + ε trA+O(ε2)
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であるから、Aが可逆行列で B が任意の行列であるとき、

det(A+ εB) = detA
(
det(I + εA−1B)

)
= (detA)

(
1 + ε tr(A−1B)

)
= detA+ ε (detA) tr(A−1B) +O(ε2)

となる。従って、

detA(t+ ε) = det

(
A(t) + ε

d

dt
A(t) +O(ε2)

)
= detA(t) + ε (detA(t)) tr

(
A(t)−1 d

dt
A(t)

)
+O(ε2)

となる。以上より、A(t)が可逆となる tに対しては

d

dt
detA(t) = (detA(t)) tr

(
A(t)−1 d

dt
A(t)

)
= (detA(t)) trC(t)

となり、所望の結果が得られた。
追記：2020.7.2。これ見ながら思ったけど、detA(t) 6= 0となるような微妙な近傍とかを調整しなくても
普通に detA(t+ ε)を展開すれば証明できると思った。つまり、

detA(t+ ε) = det

(
A(t) + ε

d

dt
A(t) +O(ε2)

)
⋆
= det

(
A(t) + εA(t)C(t) +O(ε2)

)
= detA(t) det (I + εC(t)) +O(ε2)

= detA(t) (1 + ε trC(t)) +O(ε2)

= detA(t) + ε detA(t) trC(t) +O(ε2)

ってなる。⋆の箇所は条件の微分方程式を使う。

練習問題 5.7. Vα = (V 1
α , · · · , V dα ) ∈ C∞

b (Rd,Rd) は

V βα (x) = δβα − xαxβ
|x|2

,

(
1

2
≤ |x| ≤ 2

)
を満たすとする。Xx

t を確率微分方程式

dXt =

d∑
α=1

Vα(Xt) ◦ dBαt , X0 = x

の解とする。写像 x 7→ Xx
t を Sd−1 =

{
x ∈ Rd

∣∣|x| = 1
} に制限すれば、Sd−1 上の微分同相写像になること

を示せ。

解答. 定理 5.18より、Xx
t は t (と ω) を固定するごとに xを変数とする Rd から Rd への微分同相写像である

から、|x| = 1であるときにすべての t ∈ [0,∞) (と ω) に対して |Xx
t | = 1であることを証明すれば良い。

新たな確率過程を
Y xt :

def
=
∑
α

(Xx,α
t )2 = |Xx

t |2
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と定義する。Y x0 = |x|2 である。伊藤の公式より、

d (Y xt ) =
∑
α

d
(
(Xx,α

t )2
)

= 2
∑
α

Xx,α
t ◦ dXx,α

t

= 2
∑
α

Xx,α
t ◦

∑
β

V αβ (Xx
t ) ◦ dB

β
t

= 2
∑
α,β

(
Xx,α
t V αβ (Xx

t )
)
◦ dBβt

となる。|x| = 1とすれば、十分小さい 0 < t < εに対して 1
2 ≤ |Xx

t | ≤ 2であるから、十分小さい 0 < t < ε

に対しては

Y xt − |x|2 = 2

∫ t

0

∑
α,β

(
Xx,α
t V αβ (Xx

t )
)
◦ dBβt

= 2

∫ t

0

∑
α,β

Xx,α
t

(
δβα − Xx,α

t Xx,β
t

|Xx
t |

)
◦ dBβt

= 2

∫ t

0

∑
α

Xx,α
t −

∑
α,β

(Xx,α
t )

2
Xx,β
t

|Xx
t |

 ◦ dBβt

= 2

∫ t

0

∑
α

Xx,α
t −

∑
β

Xx,β
t

 ◦ dBβt

= 0

となる。従って、十分小さいすべての 0 < t < εに対して |Xx
t |2 = Y xt = |x|2 = 1が成立することがわかる。

|Xx
t |2 = 1が成立する最大の tに対して時刻変更を行って同様のことを繰り返せば、全ての t ∈ [0,∞)に対し

て |Xx
t | = 1となることがわかる。以上で示された。

練習問題 5.8. 式 (5.48)を示せ。

解答. B
(σm)
• は Fσm

と独立であり、X(n),x
σm は Fσm

-可測である。なので練習問題 1.7の解答で示した主張 (†)

をこの場合にそのまま適用するだけで良い。
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6 確率微分方程式 (II)

練習問題 6.1. βt を 3次元ブラウン運動、0 6= y ∈ R3 とする。Yt :def= |y + βt|−1 を利用して d = N = 1に対
する確率微分方程式

dXt = X2
t dBt, X0 = x > 0

は弱い解を持つことを確かめよ。

解答. Zt :
def
= Y −1

t = |y + βt|とおく。伊藤の公式より、

dZt =
1

2Zt
d

(
3∑
i=1

(yi + βit)
2

)
+

1

2
· −1

4Z3
t

(
d

(
3∑
i=1

(yi + βit)
2

))2

=
1

2Zt

3∑
i=1

(
2(yi + βit)dβ

i
t +

1

2
· 2dt

)
− 1

8Z3
t

3∑
i=1

4(yi + βit)
2dt

=
1

Zt

3∑
i=1

(yi + βit)dβ
i
t +

3

2Zt
dt− 1

2Zt
dt

=
1

Zt

3∑
i=1

(yi + βit)dβ
i
t +

1

Zt
dt

となる。よって (dZt)
2 = dtであり、

dYt = d

(
1

Zt

)
= − 1

Z2
t

dZt +
1

Z3
t

(dZt)
2

= − 1

Z3
t

3∑
i=1

(yi + βit)dβ
i
t −

1

Z3
t

dt+
1

Z3
t

dt

= − 1

Z3
t

3∑
i=1

(yi + βit)dβ
i
t

= −Y 2
t

3∑
i=1

yi + βit
|y + βt|

dβit

を得る。定理 4.20 (1) (b) より P-a.s. に Zt > 0 であるから、i = 1, 2, 3 に対して yi+βi
t

|y+βt| ∈ L2
loc である。

よって
Bt :

def
= −

∫ t

0

3∑
i=1

yi + βit
|y + βt|

dβit

は well-definedであり、さらに定理 4.17より Bt は Ft-ブラウン運動である。また、dBt = −
∑3
i=1

yi+βi
t

|y+βt|dβ
i
t

であるから、
dYt = Y 2

t dBt

である。さらに、(P-a.s. に) Yt は連続であり、かつ発展的可測である。各 ω について Y 2
t は連続なので、

Y 2
t ∈ L2

loc である。以上より、Yt は確率微分方程式

dYt = Y 2
t dBt
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の解であるための条件 (定義 5.2) (i),(ii)を満たす。
(iii)を満たすことを証明する。σyr :

def
= {t ≥ 0||βt| = r} とおけば、0 < r < |y|に対して

Yt∧σy
r
= |y|+

∫ t∧σy
r

0

Y 2
s dBs

である。ここで r → 0とすれば、定理 4.20 (1) (b)より (P-a.s.に) σyr → ∞ であるから、任意の tに対して

Yt = |y|+
∫ t

0

Y 2
s dBs

となることがわかる。以上より (Bt, Yt)は確率微分方程式

dXt = X2
t dBt, X0 = x > 0

の弱い解となることがわかった。

練習問題 6.2. 命題 6.7の証明を完成させよ。

解答.

練習問題 6.3. ノビコフの条件が成り立てば (6.4)が成り立つ、ということを確かめよ。

解答. 0 < ε < 1とする。 1
1−ε > 1なのでヘルダーの不等式より、

E

[
exp

(
1− ε

2

∫ T

0

|at|2dt

)] 1
1−ε

≤ E

[
exp

(
1

2

∫ T

0

|at|2dt

)]

となる。従ってとくに

1 ≤

(
E

[
exp

(
1− ε

2

∫ T

0

|at|2dt

)])ε

≤

(
E

[
exp

(
1

2

∫ T

0

|at|2dt

)])ε(1−ε)
→ 1, (ε→ 0)

である。これは (6.4)が成立することを示している。

練習問題 6.4.

• T > 0,

• σ = (σiα(x))1≤i≤N,1≤α≤d ∈ C∞(RN ;RN×d),

• b = (bi)†1≤i≤N ∈ C∞(RN ;RN ),

• f1, · · · , fd ∈ C(RN )：局所リプシッツ連続な関数たち、
• b̂i :

def
= bi −

∑d
α=1 fασ

i
α, b̂ = (b̂1, · · · , b̂N ),

• φn ∈ C∞
0 (RN )：コンパクト台を持つ C∞-級関数で、|x| ≤ nならば φn(x) = 1となるもの、
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• σ(n) :
def
= φnσ, b

(n) :
def
= φnb,

• {Bt, Yt}：次の確率微分方程式の弱い解：

dYt = σ(Yt)dBt + b̂(Yt)dt, Y0 = y.

• X
(n)
t ：次の確率微分方程式の解：

dX
(n)
t = σ(n)(X

(n)
t )dBt + b(n)(X

(n)
t )dt, X

(n)
0 = y.

• Mt :
def
= exp

(∑d
α=1

∫ t
0
fα(Ys)dB

α
s − 1

2

∑d
α=1

∫ t
0
f2α(Ys)ds

)
,

• τn :
def
= inf

{
t ≥ 0

∣∣∣|X(n)
t | ≥ n

}
, τ :

def
= limn→∞ τn,

とする。このとき
P(τ > T ) = E [MT ]

を示せ。

解答. はじめに注意：aαt :
def
= fα(Yt)とおいてもこれはギルザノフの定理 (定理 6.13) の仮定を満たさないかも

しれない。なのでMt がマルチンゲールになるかどうかはわからない。あと、本文中では fα たちに局所リプ
シッツ性は仮定されていなかったが、これがないと Yt の一意性が従わないかもしれないので、問題として破
綻すると思われる。ここでは fα は局所リプシッツ連続であるとして本問題に解答する。
次のように定義しておく：

• f
(n)
α :

def
= φnfα, b̂

(n),i :
def
= φnb̂

i = b(n),i −
∑d
α=1 f

(n)
α σ

(n),i
α ,

• Y
(n)
t を次の確率微分方程式の解とする：

dY
(n)
t = σ(n)(Y

(n)
t ) + b̂(n)(Y

(n)
t )dt, Y

(n)
0 = y.

このとき f
(n)
α (Y

(n)
t ) は ω によらずある定数でおさえることのできる有界な確率過程であるから、

aαt :
def
= f

(n)
α (Y

(n)
t )とおけばこれはギルザノフの定理 (定理 6.13) の仮定を満たす。

• M
(n)
t :

def
= exp

(∑d
α=1

∫ t
0
f
(n)
α (Y

(n)
s )dBαs − 1

2

∑d
α=1

(
f
(n)
α (Y

(n)
s )

)2
ds

)
, これはギルザノフの定理 (定

理 6.13) よりマルチンゲールである。
• P̂(n) を P̂(n)(A) :

def
= E

[
M

(n)
T ;A

]
で定義される確率測度とする。

• B̂
(n),α
t を次で定義される確率過程とする：

dB̂
(n),α
t = dBαt − f (n)α (Y

(n)
t )dt, B̂

(n)
0 = 0.

ギルザノフの定理 (定理 6.13) より、B̂(n)
t は P̂(n) についてのブラウン運動であり、さらに Y

(n)
t は次

の確率微分方程式の解となる：

dY
(n)
t = σ(n)(Y

(n)
t )dB̂

(n)
t + b(n)(Y

(n)
t )dt, Y

(n)
0 = y.

• ρn :
def
= inf {t ≥ 0||Yt| ≥ n}, 極限 n→ ∞において ρn → ∞となることに注意。

二つのステップに分けて証明する。各ステップで次のことを証明する：
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Step 1: P-a.s.に
X

(n)
t∧τn∧τm = X

(m)
t∧τn∧τm , Y

(n)
t∧ρn = Yt∧ρn

であることを示す。これは定理 5.7の証明の前半部分とほとんど全く (X の方は完全に) 同じ方法で示
せる。とくに τn は P-a.s.に単調増加であり、ρn は P-a.s.に

ρn = inf
{
t ≥ 0

∣∣∣|Y (n)
t | ≥ n

}
となる。

Step 2: ギルザノフの定理を使って P(τn > T ) = E
[
M

(n)
T ; {ρn > T}

]
を示す。最後に n → ∞として求める

結果を得る。

Step 1を実行する。n,mを任意にとる。σ, bは C∞-級であるから、局所リプシッツ条件を満たす。従って、
定理 5.6の記号を使って、あるKT,n∨m が存在して任意の |x|, |y| ≤ n ∨mとなる x, y ∈ RN に対し

‖σ(x)− σ(y)‖+ |b(x)− b(y)| ≤ Kn∨m|x− y|

となる。τn の定義から、0 ≤ s ≤ τn であれば |X(n)
s | ≤ n であり、また |x| ≤ n であるときは σ(n)(x) =

σ(x), b(n)(x) = b(x)なので、X(n)
s が確率微分方程式

dX
(n)
t = σ(n)(X

(n)
t )dBt + b(n)(X

(n)
t )dt, X

(n)
0 = y.

の解であることから、P-a.s.に

X
(n)
t∧τn∧τm = y +

∫ t∧τn∧τm

0

σ(X(n)
s )dBs +

∫ t∧τn∧τm

0

b(X(n)
s )ds

が成り立つ。従って、任意の t ∈ [0, T ]に対して

E
[
sup
s≤t

∣∣∣X(n)
s∧τn∧τm −X

(m)
s∧τn∧τm

∣∣∣2]
= E

[
sup
s≤t

∣∣∣∣∫ s∧τn∧τm

0

(
σ(X(n)

u )− σ(X(m)
u )

)
dBu +

∫ s∧τn∧τm

0

(
b(X(n)

u )− b(X(m)
u )

)
du

∣∣∣∣2
]

⋆
≤ 2E

[
sup
s≤t

∣∣∣∣∫ s∧τn∧τm

0

(
σ(X(n)

u )− σ(X(m)
u )

)
dBu

∣∣∣∣2
]

+ 2E

[
sup
s≤t

∣∣∣∣∫ s∧τn∧τm

0

(
b(X(n)

u )− b(X(m)
u )

)
du

∣∣∣∣2
]

♠
≤ 8E

 N∑
i=1

∣∣∣∣∣
d∑

α=1

∫ t∧τn∧τm

0

(
σiα(X

(n)
s )− σiα(X

(m)
s )

)
dBαs

∣∣∣∣∣
2


+ 2E

[
sup
s≤t

∣∣∣∣∫ s∧τn∧τm

0

(
b(X(n)

u )− b(X(m)
u )

)
du

∣∣∣∣2
]

♣
≤ 8E

 N∑
i=1

(
d∑

α=1

∫ t∧τn∧τm

0

(
σiα(X

(n)
s )− σiα(X

(m)
s )

)
dBαs

)2


+ 2E
[
sup
s≤t

s

∫ s∧τn∧τm

0

∣∣∣b(X(n)
u )− b(X(m)

u )
∣∣∣2 du]
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♡
≤ 8E

[
N∑
i=1

d∑
α=1

∫ t∧τn∧τm

0

(
σiα(X

(n)
s )− σiα(X

(m)
s )

)2
ds

]

+ 2TE
[∫ t∧τn∧τm

0

∣∣∣b(X(n)
u )− b(X(m)

u )
∣∣∣2 ds]

≤ 8E
[∫ t∧τn∧τm

0

(∥∥∥σ(X(n)
s )− σ(X(m)

s )
∥∥∥2 + ∣∣∣b(X(n)

s )− b(X(m)
s

∣∣∣2) ds]
+ 2TE

[∫ t∧τn∧τm

0

(∥∥∥σ(X(n)
s )− σ(X(m)

s )
∥∥∥2 + ∣∣∣b(X(n)

s )− b(X(m)
s

∣∣∣2) ds]
= 2(4 + T )E

[∫ t∧τn∧τm

0

(∥∥∥σ(X(n)
s )− σ(X(m)

s )
∥∥∥2 + ∣∣∣b(X(n)

s )− b(X(m)
s

∣∣∣2) ds]
♢
≤ 2(4 + T )K2

n∨mE
[∫ t∧τn∧τm

0

∣∣∣X(n)
s −X(m)

s

∣∣∣2 ds]
≤ 2(4 + T )K2

n∨mE
[∫ t

0

∣∣∣X(n)
s∧τn∧τm −X

(m)
s∧τn∧τm

∣∣∣2 ds]
= 2(4 + T )K2

n∨m

∫ t

0

E
[∣∣∣X(n)

s∧τn∧τm −X
(m)
s∧τn∧τm

∣∣∣2] ds
≤ 2(4 + T )K2

n∨m

∫ t

0

E
[
sup
u≤s

∣∣∣X(n)
u∧τn∧τm −X

(m)
u∧τn∧τm

∣∣∣2] ds
となる。ただしここで⋆の箇所は任意の実数 a, bに対して (a+ b)2 ≤ 2a2 + 2b2 となることを用い、♠の箇
所は第一項に p = 2の場合の Doobの不等式を用い、♣の箇所は第二項にヘルダーの不等式 (例 1.14参照) を
用い、♥の箇所は第一項に伊藤積分の等長性を用い、♦の箇所は局所リプシッツ条件を用いた。この不等式評
価とグロンウォールの不等式より、

E
[
sup
t≤T

∣∣∣X(n)
t∧τn∧τm −X

(m)
t∧τn∧τm

∣∣∣2] = 0

を得る。以上より、任意の t ∈ [0, T ]に対して P-a.s.に X
(n)
t∧τn∧τm = X

(m)
t∧τn∧τm であることがわかった。

Y の方の不等式評価を行う。fα は局所リプシッツ連続であり、φn は C∞-級であるから、σ, b̂や各 lに対す
る σ(l), b̂(l) は局所リプシッツ条件を満たす、つまり従って、任意の |x|, |y| ≤ nとなる x, y ∈ RN に対し、あ
る定数 K̂n が存在し、

‖σ(n)(x)− σ(n)(y)‖+ |b̂(n)(x)− b̂(n)(y)| ≤ K̂n|x− y|

となる。ρn の定義から、0 ≤ s ≤ τn であれば |Ys| ≤ n であり、また |x| ≤ n であるときは σ(n)(x) =

σ(x), b̂(n)(x) = b̂(x)なので、Ys が確率微分方程式

dYt = σ(Yt)dBt + b̂(Yt)dt, Y0 = y.

の解であることから、P-a.s.に

Yt∧ρn = y +

∫ t∧ρn

0

σ(n)(Ys)dBs +

∫ t∧ρn

0

b̂(n)(Ys)ds
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が成り立つ。従って、任意の t ∈ [0, T ]に対して

E
[
sup
s≤t

∣∣∣Ys∧ρn − Y
(n)
s∧ρn

∣∣∣2]
= E

[
sup
s≤t

∣∣∣∣∫ s∧ρn

0

(
σ(n)(Yu)− σ(n)(Y (n)

u )
)
dBu +

∫ s∧ρn

0

(
b̂(n)(Yu)− b̂(n)(Y (n)

u )
)
du

∣∣∣∣2
]

⋆
≤ 2E

[
sup
s≤t

∣∣∣∣∫ s∧ρn

0

(
σ(n)(Yu)− σ(n)(Y (n)

u )
)
dBu

∣∣∣∣2
]

+ 2E

[
sup
s≤t

∣∣∣∣∫ s∧ρn

0

(
b̂(n)(Yu)− b̂(n)(Y (n)

u )
)
du

∣∣∣∣2
]

♠
≤ 8E

 N∑
i=1

(
d∑

α=1

∫ t∧ρn

0

(
σ(n),i
α (Ys)− σ(n),i

α (Y (n)
s )

)
dBαs

)2


+ 2E

[
sup
s≤t

∣∣∣∣∫ s∧ρn

0

(
b̂(n)(Yu)− b̂(n)(Y (n)

u )
)
du

∣∣∣∣2
]

♣
≤ 8E

 N∑
i=1

(
d∑

α=1

∫ t∧ρn

0

(
σ(n),i
α (Ys)− σ(n),i

α (Y (n)
s )

)
dBαs

)2


+ 2E
[
sup
s≤t

s

∫ s∧ρn

0

∣∣∣b̂(n)(Yu)− b̂(n)(Y (n)
u )

∣∣∣2 du]
♡
≤ 8E

[
N∑
i=1

d∑
α=1

∫ t∧ρn

0

(
σ(n),i
α (Ys)− σ(n),i

α (Y (n)
s )

)2
ds

]

+ 2TE
[∫ t∧ρn

0

∣∣∣b̂(n)(Ys)− b̂(n)(Y (n)
s )

∣∣∣2 ds]
≤ 8E

[∫ t∧ρn

0

(∥∥∥σ(n)(Ys)− σ(n)(Y (n)
s )

∥∥∥2 + ∣∣∣b̂(n)(Ys)− b̂(n)(Y (n)
s )

∣∣∣2) ds]
+ 2TE

[∫ t∧ρn

0

(∥∥∥σ(n)(Ys)− σ(n)(Y (n)
s )

∥∥∥2 + ∣∣∣b̂(n)(Ys)− b̂(n)(Y (n)
s )

∣∣∣2) ds]
= 2(4 + T )E

[∫ t∧ρn

0

(∥∥∥σ(n)(Ys)− σ(n)(Y (n)
s )

∥∥∥2 + ∣∣∣b̂(n)(Ys)− b̂(n)(Y (n)
s )

∣∣∣2) ds]
♢
≤ 2(4 + T )K̂2

nE
[∫ t∧ρn

0

∣∣∣Ys − Y (n)
s

∣∣∣2 ds]
≤ 2(4 + T )K̂2

nE
[∫ t

0

∣∣∣Ys∧ρn − Y
(n)
s∧ρn

∣∣∣2 ds]
= 2(4 + T )K̂2

n

∫ t

0

E
[∣∣∣Ys∧ρn − Y

(n)
s∧ρn

∣∣∣2] ds
≤ 2(4 + T )K̂2

n

∫ t

0

E
[
sup
u≤s

∣∣∣Yu∧ρn − Y
(n)
u∧ρn

∣∣∣2] ds
となる。ただしここで⋆の箇所は任意の実数 a, bに対して (a+ b)2 ≤ 2a2 + 2b2 となることを用い、♠の箇
所は第一項に p = 2の場合の Doobの不等式を用い、♣の箇所は第二項にヘルダーの不等式 (例 1.14参照) を
用い、♥の箇所は第一項に伊藤積分の等長性を用い、♦の箇所は局所リプシッツ条件を用いた。この不等式評
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価とグロンウォールの不等式より、
E
[
sup
t≤T

∣∣∣Yt∧ρn − Y
(n)
t∧ρn

∣∣∣2] = 0

を得る。以上より、任意の t ∈ [0, T ]に対して P-a.s.に Yt∧ρn = Y
(n)
t∧ρn であることがわかった。以上で Step

1 を完了する。
Step 2を実行する。

{
P, Bt, X

(n)
t

}
と
{
P̂, B̂

(n)
t , Y

(n)
t

}
は同じ確率微分方程式の弱い解である。σ(n), b(n)

は局所リプシッツ条件を満たすので、弱い解は一意的である (練習問題 6.2の証明を参照)。特に

P

(
sup
t∈[0,T ]

|X(n)
t | < n

)
= P̂(n)

(
sup
t∈[0,T ]

|Y (n)
t | < n

)

が成り立つ。Step 1 より、P-a.s.に

ρn = inf
{
t ≥ 0

∣∣∣|Y (n)
t | ≥ n

}
であるので、

P(τn > T ) = P

(
sup
t∈[0,T ]

|X(n)
t | < n

)

= P̂(n)

(
sup
t∈[0,T ]

|Y (n)
t | < n

)
= P̂(n)(ρn > T )

= E [MT ; {ρn > T}]
→ E [MT ] , (n→ ∞)

となる。また、Step 1 より τn は P-a.s.に単調増加であるから、

{τ > T} =
⋂
n≥0

{τn > T}

である。従って
P(τn > T ) → P(τ > T ), (n→ ∞)

であり、以上より
P(τ > T ) = E [MT ]

を得る。

練習問題 6.5. r > 0, f ∈ C∞
b (R)とする。

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x)− x

∂u

∂x
(t, x)− ru, u(0, x) = f(x), ((t, x) ∈ [0,∞)× R),

の有界な解を具体的に求めよ。
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解答. まず v(t, x) :
def
= exp

(
− 1

2x
2
)
u(t, x)とおく。このとき

∂v

∂x
(t, x) =

d

dx

(
exp

(
−1

2
x2
))

u(t, x) + exp

(
−1

2
x2
)
∂u

∂x
(t, x)

= −x exp
(
−1

2
x2
)
u(t, x) + exp

(
−1

2
x2
)
∂u

∂x
(t, x)

= −xv(t, x) + exp

(
−1

2
x2
)
∂u

∂x
(t, x),

∂2v

∂x2
(t, x) = − ∂

∂x
(xv(t, x)) +

d

dx

(
exp

(
−1

2
x2
))

∂u

∂x
(t, x) + exp

(
−1

2
x2
)
∂2u

∂x2
(t, x)

= −v(t, x)− x
∂v

∂x
(t, x)− x exp

(
−1

2
x2
)
∂u

∂x
(t, x) + exp

(
−1

2
x2
)
∂2u

∂x2
(t, x)

= −v(t, x)− x

(
−xv(t, x) + exp

(
−1

2
x2
)
∂u

∂x
(t, x)

)
− x exp

(
−1

2
x2
)
∂u

∂x
(t, x) + exp

(
−1

2
x2
)
∂2u

∂x2
(t, x)

= −v(t, x) + x2v(t, x)− 2x exp

(
−1

2
x2
)
∂u

∂x
(t, x) + exp

(
−1

2
x2
)
∂2u

∂x2
(t, x)

= −v(t, x) + x2v(t, x) + 2 exp

(
−1

2
x2
)(

1

2

∂2u

∂x2
(t, x)− x

∂u

∂x
(t, x)

)
= −v(t, x) + x2v(t, x) + 2 exp

(
−1

2
x2
)(

∂u

∂t
(t, x) + ru(t, x)

)
= −v(t, x) + x2v(t, x) + 2

∂v

∂t
(t, x) + 2rv(t, x)

= −
(
1− x2 + 2r

)
v(t, x) + 2

∂v

∂t
(t, x),

となるので、v(t, x)は次の偏微分方程式を満たす：

∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x) +

1− x2 + 2r

2
v(t, x), v(0, x) = e−

1
2x

2

u(0, x) = e−
1
2x

2

f(x).

そこで d = N = 1, V1 = 1, V0 = 0,Θ1 = 0, U(x) = 1−x2+2r
2 とおいて Xx

t を確率微分方程式

dXt =
∑
α

Vα(Xt) ◦ dBαt + V0(Xt)dt, dBt X0 = x,

の解とすると、Xx
t = Bt + xであるから、ファインマン-カッツの定理 (定理 6.22) より

v(t, x) = E
[
e−

1
2 (Bt+x)

2

f(Bt + x) exp

(∫ t

0

1

2

(
1− (Bs + x)2 + 2r

)
ds

)]
= e

1+2r
2 tE

[
f(Bt + x) exp

(
−1

2
(Bt + x)2 − 1

2

∫ t

0

(Bs + x)2ds

)]
となる。従って、

u(t, x) = e
1
2x

2

v(t, x)

= e
1+2r

2 tE
[
f(Bt + x) exp

(
−1

2
(Bt)

2 − xBt −
1

2

∫ t

0

(Bs + x)2ds

)]
となる。
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練習問題 6.6.

• σ =
(
σiα(x)

)
1≤i≤N,1≤α≤d ∈ C(RN ;RN×d),

• b = (b1, · · · , bN )† ∈ C(RN ),

• aij :
def
=
∑d
α=1 σ

i
ασ

j
α,

• L = 1
2

∑N
i,j=1 a

ij ∂2

∂xi∂xj +
∑N
i=1 b

i ∂
∂xi を RN 上の微分作用素、

• Bxt , X
x
t を次の確率微分方程式の弱い解とする：

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x.

• τx を次で定義される停止時刻とする：

τx :
def
= inf

{
t ≥ 0

∣∣∣X(
tx) 6∈ D

}
.

• g ∈ C(D̄)を連続関数で次を満たすとする：

E

[∫ τx

0

|g(Xx
t )|dt

]
<∞, (∀x ∈ D).

• f ∈ C(∂D)を連続関数、

とする。さらに u ∈ C2(D) ∩ C(D̄)は次を満たすとする：

Lu(x) = g(x), (∀x ∈ D), u|∂D = f.

このとき、上を満たす有界な uは

u(x) = E

[
f(Xx

τx)−
∫ τx

0

g(Xx
t )dt

]

と表現できることを示せ。

解答. 定理 6.26と同じ。P(τx <∞) = 1という条件が必要だと思われる。
次のように定義する：

• z ∈ RN に対して
d(z, ∂D) :

def
= inf {|z − y||y ∈ ∂D} ,

• Dn :
def
=
{
z ∈ D

∣∣|z| < n, d(z, ∂D) > 1
n

} とおく。このとき D1 ⊂ D2 ⊂ · · · , D =
⋃
n≥0Dn である。

• x ∈ Dm となるm� 0を選んで、n ≥ mに対して

τxn :
def
= inf

{
t ≥ 0

∣∣∣X(
tx) 6∈ Dn

}
と停止時刻を定める。本文中にある通り、τxn は停止時刻であり、τx はその極限であるから τx もまた
停止時刻となる。

45



D̄n は有界閉集合なので、コンパクトである。従って、D̄n 上で un = u となる un ∈ C2
0 (RN ) が存在する。

D̄n 上では un = uかつ Lun(x) = Lu(x) = g(x)である。d (u(Xt))を計算する。

dXi
tdX

j
t =

(
d∑

α=1

σiα(Xt)dB
x,α
t

) d∑
β=1

σjβ(Xt)dB
x,β
t


=

d∑
α,β=1

σiα(Xt)σ
j
β(Xt)dB

x,α
t dBx,βt

=

d∑
α,β=1

σiα(Xt)σ
j
β(Xt)δ

αβdt

=

d∑
α=1

σiα(Xt)σ
j
α(Xt)dt

となるので、伊藤の公式より

d (u(Xt)) =

N∑
i=1

∂u

∂xi
(Xt)dX

i
t +

1

2

N∑
i,j=1

∂2u

∂xi∂xj
(Xt)dX

i
tdX

j
t

=

N∑
i=1

d∑
α=1

σiα(Xt)
∂u

∂xi
(Xt)dB

x,α
t +

N∑
i=1

bi(Xt)
∂u

∂xi
(Xt)dt+

1

2

N∑
i,j=1

d∑
α=1

σiα(Xt)σ
j
α(Xt)

∂2u

∂xi∂xj
(Xt)dt

=

N∑
i=1

d∑
α=1

σiα(Xt)
∂u

∂xi
(Xt)dB

x,α
t +

N∑
i=1

bi(Xt)
∂u

∂xi
(Xt)dt+

1

2

N∑
i,j=1

d∑
α=1

aij(Xt)
∂2u

∂xi∂xj
(Xt)dt

=

N∑
i=1

d∑
α=1

σiα(Xt)
∂u

∂xi
(Xt)dB

x,α
t + Lu(Xt)dt

=

N∑
i=1

d∑
α=1

σiα(Xt)
∂u

∂xi
(Xt)dB

x,α
t + g(Xt)dt

であるから、D̄n 上では

u(Xx
t∧τx

n
) = u(x) +

N∑
i=1

d∑
α=1

∫ t∧τx
n

0

σiα(Xs)
∂u

∂xi
(Xs)dB

x,α
s +

∫ t∧τx
n

0

g(Xs)ds

となることがわかる。un は RN 全体で定義された二階微分が連続な有界な関数であり、σiα は連続、とくに
D̄n 上で有界であるから σiα

∂un

∂xi は D̄n 上で有界であり、とくに σiα
∂un

∂xi ∈ L2 である。従って上式の右辺第二
項はマルチンゲールであり、期待値をとれば、x ∈ Dn に対して

E
[
u(Xx

t∧τx
n
)
]
= u(x) + E

[∫ t∧τx
n

0

g(Xs)ds

]
となる。n→ ∞とすれば、x ∈ D と t ≥ 0に対して

E [u(Xx
t∧τx)] = u(x) + E

[∫ t∧τx

0

g(Xs)ds

]
を得る。さらに t→ ∞とすることで、P(τx <∞) = 1より

E [u(Xx
τx)] = u(x) + E

[∫ τx

0

g(Xt)dt

]
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を得る。τx の定義より Xx
τx ∈ ∂D であるから、u(Xx

τx) = f(Xx
τx)であり、従って

u(x) = E

[
f(Xx

τx)−
∫ τx

0

g(Xt)dt

]

を得る。これは所望の等式である。

練習問題 6.7. D ⊂ RN をコンパクト集合とする。u ∈ C2(D) ∩ C(D̄)が D 上 ∆u = 0を満たすとする。こ
のとき

max
x∈D̄

u(x) ≤ max
x∈∂D

u(x)

となることを示せ。

解答. d = N, σiα = δiα, b = 0とした場合の確率微分方程式

dXt = σ(Xt)dBt + b(Xt)dt, X0 = x,

の解は Xt = Bt + x である。このとき L =
∑N
i=1

∂2

∂x2
i
= ∆ であり、さらに停止時刻 τx は定理 4.20 より

P(τx <∞) = 1を満たす。
f(y) :

def
= u(y), (y ∈ ∂D)と定義すると、uは偏微分方程式

Lu(x) = 0, (x ∈ D), u|∂D = f,

の有界な解であるから、定理 6.26 より u(x) = E [f(Xx
τx)] と表示できる。任意の y ∈ ∂D に対して

f(y) ≤ maxx∈∂D f(x) であるから、とくに

f(Xx
τx) ≤ max

x∈∂D
f(x)

であり、従って
u(x) = E [f(Xx

τx)] ≤ E
[
max
x∈∂D

f(x)

]
= max
x∈∂D

f(x)

が成り立つ。左辺の maxを取れば所望の不等式を得る。

練習問題 6.8.

• D :
def
=
{
(xi)1≤i≤4 ∈ R4

∣∣x21 + x22 < 1, x23 + x24 < 1
}
,

• D0 :
def
=
{
(xi)1≤i≤4 ∈ R4

∣∣x21 + x22 = 1, x23 + x24 = 1
}
,

• B :
def
=
{
x ∈ R4

∣∣|x| < 2
}
,

とする。B 上で ∆u = 0を満たす u ∈ C2(B)に対して

max
x∈D̄

u(x) ≤ max
x∈D0

u(x)

を示せ。
とくに f ∈ C(∂D) が D0 以外で最大値をとるならば、D̄ を含む開集合 D′ 上で ∆u = 0 であり、さらに

u|∂D = f となるような u ∈ C2(D′)は存在しないことを確かめよ。

解答.
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7 経路空間での微積分学
練習問題 7.1. γ, δ が [0,∞)上の C1-級関数であり、T が十分小さいとすると、条件 (A.1)が成り立つことを
示せ。

解答.

練習問題 7.2. γ(t) = 0, δ(t) = δ(0), (∀t ≤ T ) と仮定する。B ∈ Rd×d に対し、c(B) :
def
=
∑∞
n=0

(−1)n

(2n)! B
n と

定義する。

(1) A(t) = c(δ(0)(T − t)2), (t ≤ T )となることを示せ。
(2) λ1, · · · , λd を δ(0)の固有値とするとき、

detA(t) =

d∏
α=1

cos
(√

λα(t− T )
)

となることを示せ。
(3) maxα=1,··· ,d λα <

π2

4T 2 となるとき、(A.1)が成り立つことを示せ。

解答. (1)は本文では A(t) = c(δ(0)(T − t))を示せ、となっていたけど、これは 2乗が抜けてるんじゃないか
と思う。(2)と比較してもそんな感じがする。
(1)。γ(t) = 0と δ(t) = δ(0)から、与えられた微分方程式は

A′′(t) = −δ(0)A(t)

と書ける。従って、A(t)は C∞-級であり、T のまわりでテイラー展開すると、

A(t) = A(T + (t− T )) =

∞∑
n=0

1

n!
A(n)(T )(t− T )n

となる。ここで A(n)(t)は A(t)の n階導関数である。

A(2n)(T ) = −δ(0)A(2(n−1))(T ) = · · · = (−1)nδ(0)nA(T ) = (−1)nδ(0)n,

A(2n+1)(T ) = −δ(0)A(2n−1)(T ) = · · · = (−1)nδ(0)nA′(T ) = 0,

に注意すると、

A(t) =

∞∑
n=0

1

n!
A(n)(T )(t− T )n

=

∞∑
n=0

1

(2n)!
A(2n)(T )(t− T )2n

=

∞∑
n=0

1

(2n)!
(−1)nδ(0)n(t− T )2n

= c(δ(0)(T − t)2)

を得る。これは所望の結果である。
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(2)。δ(0) は (重複込みで) ちょうど d 個の固有値を持つので上三角化可能である。D :
def
= Pδ(0)P−1 が上

三角行列となるように P をとれば、

c(δ(0)(T − t)2) = c(P−1DP (T − t)2) = P−1c(D(T − t)2)P

となる。各 Dn の対角成分が λn1 , · · · , λnd であることから、c(D(T − t)2)の対角成分は

cos(
√
λ1(t− T )) =

∞∑
n=0

(−1)n

(2n)!
λn1 (T − t)2, · · · , cos(

√
λd(t− T )) =

∞∑
n=0

(−1)n

(2n)!
λnd (T − t)2

である。従って

detA(t) = det(P−1c(D(T − t)2)P ) = det c(D(T − t)2) =

d∏
α=1

cos(
√
λα(t− T ))

となる。これは所望の結果である。
(3)。(2)の結果を見れば、各 cosが 6= 0であれば良いが、それは条件より明らかである。

練習問題 7.3. d = 1 とし、δ(t) < 0, (∀t ≤ T ) を仮定する。このとき、A′′(t) ≥ 0, (t ≤ T ) を示し、条件
(A.1)が成り立つことを示せ。

解答. d = 1なので、γ† = −γ であることから γ = 0となる。従って与えられた微分方程式は

A′′(t) = −δ(t)A(t)

である。ここで δ(t) < 0であるから、右辺の係数 −δ(t)は正である。A(t) = 0となる t ∈ [0, T ]が存在する
と仮定する。また A(T ) = I = 1 > 0であることから、α :

def
= max {t ∈ [0, T ]|A(t) = 0} とおけば、α < T で

ある。このとき、すべての s ∈ [α, T ]に対して δ(s)A(s) < 0である。A′(T ) = 1
2γ(T ) = 0であることに注意

して、すべての t ∈ (α, T )に対して

A′(t) = A′(t)−A′(T ) =

∫ t

T

A′′(s)ds =

∫ T

t

δ(s)A(s)ds < 0

となる。一方、A(α) = 0であるから、

1 = A(T ) = A(T )−A(α) =

∫ T

α

A′(s)ds < 0

となり、これは矛盾である。よって A(t) = 0となる点 tは存在しない。

練習問題 7.4. 伊藤の公式を用いて、補題 7.7の等式を証明せよ。

解答. 補題 7.7の等式の右辺の第二項の dtに関する積分の積分範囲に誤植がある。正しい積分範囲は 0から
T であると思われる。
F (t) :

def
=
∫ T
t
κ(s)dsとおく。F ′(t) = −κ(t)である。F (t)は行列で、その成分を F (t)ij のように書く。示

すべき等式は
2

∫ T

0

〈F (t)Bt, dBt〉+
∫ T

0

trF (t)dt+

∫ T

0

〈F ′(t)Bt, Bt〉 dt = 0
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である。δ をクロネッカーのデルタとして、trF (t) = F (t)ijδ
ij と F (t) = F (t)† に注意して、内積を成分ご

とに計算することで、∫ T

0

F (t)ijB
i
tdB

j
t +

∫ T

0

F (t)ijB
j
t dB

i
t +

∫ T

0

(
F (t)ijδ

ij + F ′(t)ijB
i
tB

j
t

)
dt = 0

を示せば良い。ただし添字に関しては縮約記法を用いて和を取っている。δijdt = dBitdB
j
t に注意すると、伊

藤の公式より

F (t)ijB
i
tdB

j
t + F (t)ijB

j
t dB

i
t + F (t)ijδ

ijdt+ F ′(t)ijB
i
tB

j
t dt

= BitB
j
tF

′(t)ijdt+ F (t)ijd(B
i
tB

j
t )

= d
(
F (t)ijB

i
tB

j
t

)
となる。∫ T

0
で積分すると、∫ T

0

F (t)ijB
i
tdB

j
t +

∫ T

0

F (t)ijB
j
t dB

i
t +

∫ T

0

(
F (t)ijδ

ij + F ′(t)ijB
i
tB

j
t

)
dt

=

∫ T

0

d
(
F (t)ijB

i
tB

j
t

)
= F (T )ijB

i
TB

j
T − F (0)ijB

i
0B

j
0

となる。F (T ) =
∫ T
T
κ(s)ds = 0 と B0 = 0 に注意すれば、この等式の右辺は 0 となり、所望の結果を得

る。

練習問題 7.5. 定理 7.10の証明中の X
(x,η)
t = X

ξ
(x,η)
t
t が確率微分方程式 (7.11)の解となることを確かめよ。

解答.

練習問題 7.6. Bt を d次元ブラウン運動とする。BT ∼ N(0, T I)となることを用いて系 7.12の等式を証明
せよ。

解答. α = 1で証明すれば良い。x1 で部分積分をすることで、

E
[
∂f

∂x1
(BT )

]
=

1

(2πT )d/2

∫
Rd

∂f

∂x1
(x)e−

1
2

∑d
i=1(x

i)2dx

=
1

(2πT )d/2

∫
Rd−1

([
f(x)e−

1
2

∑d
i=1(x

i)2
]∞
−∞

+
1

T

∫ ∞

−∞
x1f(x)e−

1
2

∑d
i=1(x

i)2dx1
)
dx2 · · · dxd

=
1

T
· 1

(2πT )d/2

∫
Rd

x1f(x)e−
1
2

∑d
i=1(x

i)2dx

=
1

T
E
[
f(BT )B

1
T

]
となる。これは所望の等式である。

練習問題 7.7. V0, · · · , Vd ∈ C∞
d (RN ;RN )の場合にも、f ∈ C∞

b (RN ), ξ ∈ RN に対して次が成り立つことを
示せ：

E [〈∇f(Xx
t ), J

x
TA

x
T ξ〉] = E

[
f(Xx

t )

d∑
α=1

∫ T

0

〈
(Jxt )

−1Vα(X
x
t ), ξ

〉]
.
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解答. 系 7.11で g = 1 (定数関数) とすれば、V0, · · · , Vd ∈ C∞
0 (RN ;RN ) の場合が従う。φn ∈ C∞

0 (RN )を
φn(x) = 1, (|x| ≤ n)となるものとして、V nα (x) :

def
= Vα(x)φ(x)と定めると、V n1 , · · · , V nd ∈ C∞

0 (RN ;RN )で
あるから、

E [〈∇f(Xx
t ), J

n,x
T An,xT ξ〉] = E

[
f(Xx

t )

d∑
α=1

∫ T

0

〈
(Jn,xt )−1V nα (Xx

t ), ξ
〉]

となる。ただし Jn, An はそれぞれ V n に対する J,Aである。n → ∞として有界収束定理を用いれば所望の
結果を得る。
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